A First Course in Combinatorial Optimization

Author: Jon Lee
Publisher: Cambridge University Press
ISBN: 9780521010122
Format: PDF, Docs
Download Now
A First Course in Combinatorial Optimization is a text for a one-semester introductory graduate-level course for students of operations research, mathematics, and computer science. It is a self-contained treatment of the subject, requiring only some mathematical maturity. Topics include: linear and integer programming, polytopes, matroids and matroid optimization, shortest paths, and network flows. Central to the exposition is the polyhedral viewpoint, which is the key principle underlying the successful integer-programming approach to combinatorial-optimization problems. Another key unifying topic is matroids. The author does not dwell on data structures and implementation details, preferring to focus on the key mathematical ideas that lead to useful models and algorithms. Problems and exercises are included throughout as well as references for further study.

Iterative Methods in Combinatorial Optimization

Author: Lap Chi Lau
Publisher: Cambridge University Press
ISBN: 1139499394
Format: PDF, Docs
Download Now
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.

Combinatorial Optimization

Author: Eugene Lawler
Publisher: Courier Corporation
ISBN: 048614366X
Format: PDF, ePub
Download Now
Perceptive text examines shortest paths, network flows, bipartite and nonbipartite matching, matroids and the greedy algorithm, matroid intersections, and the matroid parity problems. Suitable for courses in combinatorial computing and concrete computational complexity.

Graphs Networks and Algorithms

Author: Dieter Jungnickel
Publisher: Springer Science & Business Media
ISBN: 3642322786
Format: PDF
Download Now
From the reviews of the previous editions ".... The book is a first class textbook and seems to be indispensable for everybody who has to teach combinatorial optimization. It is very helpful for students, teachers, and researchers in this area. The author finds a striking synthesis of nice and interesting mathematical results and practical applications. ... the author pays much attention to the inclusion of well-chosen exercises. The reader does not remain helpless; solutions or at least hints are given in the appendix. Except for some small basic mathematical and algorithmic knowledge the book is self-contained. ..." K.Engel, Mathematical Reviews 2002 The substantial development effort of this text, involving multiple editions and trailing in the context of various workshops, university courses and seminar series, clearly shows through in this new edition with its clear writing, good organisation, comprehensive coverage of essential theory, and well-chosen applications. The proofs of important results and the representation of key algorithms in a Pascal-like notation allow this book to be used in a high-level undergraduate or low-level graduate course on graph theory, combinatorial optimization or computer science algorithms. The well-worked solutions to exercises are a real bonus for self study by students. The book is highly recommended. P .B. Gibbons, Zentralblatt für Mathematik 2005 Once again, the new edition has been thoroughly revised. In particular, some further material has been added: more on NP-completeness (especially on dominating sets), a section on the Gallai-Edmonds structure theory for matchings, and about a dozen additional exercises – as always, with solutions. Moreover, the section on the 1-factor theorem has been completely rewritten: it now presents a short direct proof for the more general Berge-Tutte formula. Several recent research developments are discussed and quite a few references have been added.

Iterative Methods in Combinatorial Optimization

Author: Lap Chi Lau
Publisher: Cambridge University Press
ISBN: 1139499394
Format: PDF, ePub
Download Now
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.

Introduction to Applied Mathematics

Author: Gilbert Strang
Publisher: Wellesley-Cambridge Press
ISBN: 9780961408800
Format: PDF, ePub, Docs
Download Now
Renowned applied mathematician Gilbert Strang teaches applied mathematics with the clear explanations, examples and insights of an experienced teacher. This book progresses steadily through a range of topics from symmetric linear systems to differential equations to least squares and Kalman filtering and optimization. It clearly demonstrates the power of matrix algebra in engineering problem solving. This is an ideal book (beloved by many readers) for a first course on applied mathematics and a reference for more advanced applied mathematicians. The only prerequisite is a basic course in linear algebra.

Combinatorial Algebraic Topology

Author: Dimitry Kozlov
Publisher: Springer Science & Business Media
ISBN: 3540719628
Format: PDF, Kindle
Download Now
This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Understanding and Using Linear Programming

Author: Jiri Matousek
Publisher: Springer Science & Business Media
ISBN: 3540307176
Format: PDF, ePub, Docs
Download Now
The book is an introductory textbook mainly for students of computer science and mathematics. Our guiding phrase is "what every theoretical computer scientist should know about linear programming". A major focus is on applications of linear programming, both in practice and in theory. The book is concise, but at the same time, the main results are covered with complete proofs and in sufficient detail, ready for presentation in class. The book does not require more prerequisites than basic linear algebra, which is summarized in an appendix. One of its main goals is to help the reader to see linear programming "behind the scenes".

A First Course in Continuum Mechanics

Author: Oscar Gonzalez
Publisher: Cambridge University Press
ISBN: 0521886805
Format: PDF, Docs
Download Now
A concise account of classic theories of fluids and solids, for graduate and advanced undergraduate courses in continuum mechanics.

The Design of Approximation Algorithms

Author: David P. Williamson
Publisher: Cambridge University Press
ISBN: 1139498177
Format: PDF, Mobi
Download Now
Discrete optimization problems are everywhere, from traditional operations research planning (scheduling, facility location and network design); to computer science databases; to advertising issues in viral marketing. Yet most such problems are NP-hard; unless P = NP, there are no efficient algorithms to find optimal solutions. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first section is devoted to a single algorithmic technique applied to several different problems, with more sophisticated treatment in the second section. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithm courses, it will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.