A First Course in Differential Equations Modeling and Simulation

Author: Carlos A. Smith
Publisher: CRC Press
ISBN: 1439850879
Format: PDF, ePub, Mobi
Download Now
Emphasizing a practical approach for engineers and scientists, A First Course in Differential Equations, Modeling, and Simulation avoids overly theoretical explanations and shows readers how differential equations arise from applying basic physical principles and experimental observations to engineering systems. It also covers classical methods for obtaining the analytical solution of differential equations and Laplace transforms. In addition, the authors discuss how these equations describe mathematical systems and how to use software to solve sets of equations where analytical solutions cannot be obtained. Using simple physics, the book introduces dynamic modeling, the definition of differential equations, two simple methods for obtaining their analytical solution, and a method to follow when modeling. It then presents classical methods for solving differential equations, discusses the engineering importance of the roots of a characteristic equation, and describes the response of first- and second-order differential equations. A study of the Laplace transform method follows with explanations of the transfer function and the power of Laplace transform for obtaining the analytical solution of coupled differential equations. The next several chapters present the modeling of translational and rotational mechanical systems, fluid systems, thermal systems, and electrical systems. The final chapter explores many simulation examples using a typical software package for the solution of the models developed in previous chapters. Providing the necessary tools to apply differential equations in engineering and science, this text helps readers understand differential equations, their meaning, and their analytical and computer solutions. It illustrates how and where differential equations develop, how they describe engineering systems, how to obtain the analytical solution, and how to use software to simulate the systems.

A First Course in Differential Equations Modeling and Simulation Second Edition

Author: Carlos A. Smith
Publisher: CRC Press
ISBN: 1482257238
Format: PDF
Download Now
A First Course in Differential Equations, Modeling, and Simulation shows how differential equations arise from applying basic physical principles and experimental observations to engineering systems. Avoiding overly theoretical explanations, the textbook also discusses classical and Laplace transform methods for obtaining the analytical solution of differential equations. In addition, the authors explain how to solve sets of differential equations where analytical solutions cannot easily be obtained. Incorporating valuable suggestions from mathematicians and mathematics professors, the Second Edition: Expands the chapter on classical solutions of ordinary linear differential equations to include additional methods Increases coverage of response of first- and second-order systems to a full, stand-alone chapter to emphasize its importance Includes new examples of applications related to chemical reactions, environmental engineering, biomedical engineering, and biotechnology Contains new exercises that can be used as projects and answers to many of the end-of-chapter problems Features new end-of-chapter problems and updates throughout Thus, A First Course in Differential Equations, Modeling, and Simulation, Second Edition provides students with a practical understanding of how to apply differential equations in modern engineering and science.

A First Course in Differential Equations with Modeling Applications

Author: Dennis Zill
Publisher: Cengage Learning
ISBN: 1111827052
Format: PDF, Kindle
Download Now
A FIRST COURSE IN DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS, 10th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible text speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, this book provides a thorough treatment of boundary-value problems and partial differential equations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

A First Course in Differential Equations

Author: J. David Logan
Publisher: Springer
ISBN: 3319178520
Format: PDF
Download Now
The third edition of this concise, popular textbook on elementary differential equations gives instructors an alternative to the many voluminous texts on the market. It presents a thorough treatment of the standard topics in an accessible, easy-to-read, format. The overarching perspective of the text conveys that differential equations are about applications. This book illuminates the mathematical theory in the text with a wide variety of applications that will appeal to students in physics, engineering, the biosciences, economics and mathematics. Instructors are likely to find that the first four or five chapters are suitable for a first course in the subject. This edition contains a healthy increase over earlier editions in the number of worked examples and exercises, particularly those routine in nature. Two appendices include a review with practice problems, and a MATLAB® supplement that gives basic codes and commands for solving differential equations. MATLAB® is not required; students are encouraged to utilize available software to plot many of their solutions. Solutions to even-numbered problems are available on springer.com.

A First Course in the Numerical Analysis of Differential Equations

Author: A. Iserles
Publisher: Cambridge University Press
ISBN: 0521734908
Format: PDF
Download Now
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.

A Course in Ordinary Differential Equations Second Edition

Author: Stephen A. Wirkus
Publisher: CRC Press
ISBN: 1466509104
Format: PDF, Kindle
Download Now
A Course in Ordinary Differential Equations, Second Edition teaches students how to use analytical and numerical solution methods in typical engineering, physics, and mathematics applications. Lauded for its extensive computer code and student-friendly approach, the first edition of this popular textbook was the first on ordinary differential equations (ODEs) to include instructions on using MATLAB®, Mathematica®, and MapleTM. This second edition reflects the feedback of students and professors who used the first edition in the classroom. New to the Second Edition Moves the computer codes to Computer Labs at the end of each chapter, which gives professors flexibility in using the technology Covers linear systems in their entirety before addressing applications to nonlinear systems Incorporates the latest versions of MATLAB, Maple, and Mathematica Includes new sections on complex variables, the exponential response formula for solving nonhomogeneous equations, forced vibrations, and nondimensionalization Highlights new applications and modeling in many fields Presents exercise sets that progress in difficulty Contains color graphs to help students better understand crucial concepts in ODEs Provides updated and expanded projects in each chapter Suitable for a first undergraduate course, the book includes all the basics necessary to prepare students for their future studies in mathematics, engineering, and the sciences. It presents the syntax from MATLAB, Maple, and Mathematica to give students a better grasp of the theory and gain more insight into real-world problems. Along with covering traditional topics, the text describes a number of modern topics, such as direction fields, phase lines, the Runge-Kutta method, and epidemiological and ecological models. It also explains concepts from linear algebra so that students acquire a thorough understanding of differential equations.

Stochastic Modelling for Systems Biology Second Edition

Author: Darren J. Wilkinson
Publisher: CRC Press
ISBN: 1439837724
Format: PDF, ePub, Mobi
Download Now
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Re-written to reflect this modern perspective, this second edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. Keeping with the spirit of the first edition, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. New in the Second Edition All examples have been updated to Systems Biology Markup Language Level 3 All code relating to simulation, analysis, and inference for stochastic kinetic models has been re-written and re-structured in a more modular way An ancillary website provides links, resources, errata, and up-to-date information on installation and use of the associated R package More background material on the theory of Markov processes and stochastic differential equations, providing more substance for mathematically inclined readers Discussion of some of the more advanced concepts relating to stochastic kinetic models, such as random time change representations, Kolmogorov equations, Fokker-Planck equations and the linear noise approximation Simple modelling of "extrinsic" and "intrinsic" noise An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional mathematical detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.

A First Course in Mathematical Modeling

Author: Frank R. Giordano
Publisher: Cengage Learning
ISBN: 1285531760
Format: PDF
Download Now
Offering a solid introduction to the entire modeling process, A FIRST COURSE IN MATHEMATICAL MODELING, 5th Edition delivers an excellent balance of theory and practice, and gives you relevant, hands-on experience developing and sharpening your modeling skills. Throughout, the book emphasizes key facets of modeling, including creative and empirical model construction, model analysis, and model research, and provides myriad opportunities for practice. The authors apply a proven six-step problem-solving process to enhance your problem-solving capabilities -- whatever your level. In addition, rather than simply emphasizing the calculation step, the authors first help you learn how to identify problems, construct or select models, and figure out what data needs to be collected. By involving you in the mathematical process as early as possible -- beginning with short projects -- this text facilitates your progressive development and confidence in mathematics and modeling. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

A Course in Ordinary Differential Equations

Author: Stephen A. Wirkus
Publisher: CRC Press
ISBN: 1420010417
Format: PDF, Docs
Download Now
The first contemporary textbook on ordinary differential equations (ODEs) to include instructions on MATLAB®, Mathematica®, and MapleTM, A Course in Ordinary Differential Equations focuses on applications and methods of analytical and numerical solutions, emphasizing approaches used in the typical engineering, physics, or mathematics student's field of study. Stressing applications wherever possible, the authors have written this text with the applied math, engineer, or science major in mind. It includes a number of modern topics that are not commonly found in a traditional sophomore-level text. For example, Chapter 2 covers direction fields, phase line techniques, and the Runge-Kutta method; another chapter discusses linear algebraic topics, such as transformations and eigenvalues. Chapter 6 considers linear and nonlinear systems of equations from a dynamical systems viewpoint and uses the linear algebra insights from the previous chapter; it also includes modern applications like epidemiological models. With sufficient problems at the end of each chapter, even the pure math major will be fully challenged. Although traditional in its coverage of basic topics of ODEs, A Course in Ordinary Differential Equations is one of the first texts to provide relevant computer code and instruction in MATLAB, Mathematica, and Maple that will prepare students for further study in their fields.