**Author**: D. G. Northcott

**Publisher:**CUP Archive

**ISBN:**9780521201964

**Format:**PDF, ePub

Download Now

Designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject.

Skip to content
# Download A First Course Of Homological Algebra book pdf or read power of hope book pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get A First Course Of Homological Algebra book pdf book now.

## A First Course of Homological Algebra

**Author**: D. G. Northcott

**Publisher:** CUP Archive

**ISBN:** 9780521201964

**Format:** PDF, ePub

Download Now

Designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject.

## A Course in Homological Algebra

**Author**: P.J. Hilton

**Publisher:** Springer Science & Business Media

**ISBN:** 146849936X

**Format:** PDF, Docs

Download Now

In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.

## An Elementary Approach to Homological Algebra

**Author**: L.R. Vermani

**Publisher:** CRC Press

**ISBN:** 0203484088

**Format:** PDF, Kindle

Download Now

Homological algebra was developed as an area of study almost 50 years ago, and many books on the subject exist. However, few, if any, of these books are written at a level appropriate for students approaching the subject for the first time. An Elementary Approach to Homological Algebra fills that void. Designed to meet the needs of beginning graduate students, it presents the material in a clear, easy-to-understand manner. Complete, detailed proofs make the material easy to follow, numerous worked examples help readers understand the concepts, and an abundance of exercises test and solidify their understanding. Often perceived as dry and abstract, homological algebra nonetheless has important applications in many important areas. The author highlights some of these, particularly several related to group theoretic problems, in the concluding chapter. Beyond making classical homological algebra accessible to students, the author's level of detail, while not exhaustive, also makes the book useful for self-study and as a reference for researchers.

## Algebraic Topology

**Author**: William Fulton

**Publisher:** Springer Science & Business Media

**ISBN:** 1461241804

**Format:** PDF, Docs

Download Now

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

## Commutative Algebra

**Author**: David Eisenbud

**Publisher:** Springer Science & Business Media

**ISBN:** 9780387942698

**Format:** PDF, Mobi

Download Now

Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algebraic geometry. To help beginners, the essential ideals from algebraic geometry are treated from scratch. Appendices on homological algebra, multilinear algebra and several other useful topics help to make the book relatively self- contained. Novel results and presentations are scattered throughout the text.

## Methods of Homological Algebra

**Author**: Sergei I. Gelfand

**Publisher:** Springer Science & Business Media

**ISBN:** 3662124920

**Format:** PDF, Docs

Download Now

This modern approach to homological algebra by two leading writers in the field is based on the systematic use of the language and ideas of derived categories and derived functors. It describes relations with standard cohomology theory and provides complete proofs. Coverage also presents basic concepts and results of homotopical algebra. This second edition contains numerous corrections.

## An Introduction to Homological Algebra

**Author**: Charles A. Weibel

**Publisher:** Cambridge University Press

**ISBN:** 113964307X

**Format:** PDF, ePub, Mobi

Download Now

The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.

## Lectures in Homological Algebra

**Author**: Peter Hilton

**Publisher:**

**ISBN:** 9780821838723

**Format:** PDF, ePub, Mobi

Download Now

This volume constitutes a record of the course in homological algebra given at the Virginia Polytechnic Institute in July 1970 under the auspices of the National Science Foundation's Regional Conference project. The nature of the audience required that the course begin with an introduction to the notion of modules over a unitary ring, but permitted rapid development of the theory from that starting point. The first three chapters may be regarded as containin g material essential to any introductory course in homological algebra, while the later chapters reflect the choices actually made by the audience among many possible special topics accessible to those who had mastered the early material. Thus it may be claimed that the course achieved depth of penetration on a narrow front, while it is admitted that breadth of coverage of the entire domain of homological algebra was neither attempted nor achieved.

## Basic Homological Algebra

**Author**: M. Scott Osborne

**Publisher:** Springer Science & Business Media

**ISBN:** 1461212782

**Format:** PDF, ePub, Mobi

Download Now

From the reviews: "The book is well written. We find here many examples. Each chapter is followed by exercises, and at the end of the book there are outline solutions to some of them. [...] I especially appreciated the lively style of the book; [...] one is quickly able to find necessary details." EMS Newsletter

## Relative Homological Algebra

**Author**: Edgar E. Enochs

**Publisher:** Walter de Gruyter

**ISBN:** 3110215217

**Format:** PDF, Mobi

Download Now

This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. The book is also suitable for an introductory course in commutative and ordinary homological algebra.

Download Now

Designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject.

Download Now

In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.

Download Now

Homological algebra was developed as an area of study almost 50 years ago, and many books on the subject exist. However, few, if any, of these books are written at a level appropriate for students approaching the subject for the first time. An Elementary Approach to Homological Algebra fills that void. Designed to meet the needs of beginning graduate students, it presents the material in a clear, easy-to-understand manner. Complete, detailed proofs make the material easy to follow, numerous worked examples help readers understand the concepts, and an abundance of exercises test and solidify their understanding. Often perceived as dry and abstract, homological algebra nonetheless has important applications in many important areas. The author highlights some of these, particularly several related to group theoretic problems, in the concluding chapter. Beyond making classical homological algebra accessible to students, the author's level of detail, while not exhaustive, also makes the book useful for self-study and as a reference for researchers.

Download Now

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

Download Now

Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algebraic geometry. To help beginners, the essential ideals from algebraic geometry are treated from scratch. Appendices on homological algebra, multilinear algebra and several other useful topics help to make the book relatively self- contained. Novel results and presentations are scattered throughout the text.

Download Now

This modern approach to homological algebra by two leading writers in the field is based on the systematic use of the language and ideas of derived categories and derived functors. It describes relations with standard cohomology theory and provides complete proofs. Coverage also presents basic concepts and results of homotopical algebra. This second edition contains numerous corrections.

Download Now

The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.

Download Now

This volume constitutes a record of the course in homological algebra given at the Virginia Polytechnic Institute in July 1970 under the auspices of the National Science Foundation's Regional Conference project. The nature of the audience required that the course begin with an introduction to the notion of modules over a unitary ring, but permitted rapid development of the theory from that starting point. The first three chapters may be regarded as containin g material essential to any introductory course in homological algebra, while the later chapters reflect the choices actually made by the audience among many possible special topics accessible to those who had mastered the early material. Thus it may be claimed that the course achieved depth of penetration on a narrow front, while it is admitted that breadth of coverage of the entire domain of homological algebra was neither attempted nor achieved.

Download Now

From the reviews: "The book is well written. We find here many examples. Each chapter is followed by exercises, and at the end of the book there are outline solutions to some of them. [...] I especially appreciated the lively style of the book; [...] one is quickly able to find necessary details." EMS Newsletter

Download Now

This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. The book is also suitable for an introductory course in commutative and ordinary homological algebra.