A Handbook of Statistical Analyses using SAS Third Edition

Author: Geoff Der
Publisher: CRC Press
ISBN: 1584887850
Format: PDF, Mobi
Download Now
Updated to reflect SAS 9.2, A Handbook of Statistical Analyses using SAS, Third Edition continues to provide a straightforward description of how to conduct various statistical analyses using SAS. Each chapter shows how to use SAS for a particular type of analysis. The authors cover inference, analysis of variance, regression, generalized linear models, longitudinal data, survival analysis, principal components analysis, factor analysis, cluster analysis, discriminant function analysis, and correspondence analysis. They demonstrate the analyses through real-world examples, including methadone maintenance treatment, the relation of cirrhosis deaths to alcohol consumption, a sociological study of children, heart transplant treatment, and crime rate determinants. With the data sets and SAS code available online, this book remains the go-to resource for learning how to use SAS for many kinds of statistical analysis. It serves as a stepping stone to the wider resources available to SAS users.

A Handbook of Statistical Analyses Using R

Author: Torsten Hothorn
Publisher: CRC Press
ISBN: 9781420010657
Format: PDF, Docs
Download Now
R is dynamic, to say the least. More precisely, it is organic, with new functionality and add-on packages appearing constantly. And because of its open-source nature and free availability, R is quickly becoming the software of choice for statistical analysis in a variety of fields. Doing for R what Everitt's other Handbooks have done for S-PLUS, STATA, SPSS, and SAS, A Handbook of Statistical Analyses Using R presents straightforward, self-contained descriptions of how to perform a variety of statistical analyses in the R environment. From simple inference to recursive partitioning and cluster analysis, eminent experts Everitt and Hothorn lead you methodically through the steps, commands, and interpretation of the results, addressing theory and statistical background only when useful or necessary. They begin with an introduction to R, discussing the syntax, general operators, and basic data manipulation while summarizing the most important features. Numerous figures highlight R's strong graphical capabilities and exercises at the end of each chapter reinforce the techniques and concepts presented. All data sets and code used in the book are available as a downloadable package from CRAN, the R online archive. A Handbook of Statistical Analyses Using R is the perfect guide for newcomers as well as seasoned users of R who want concrete, step-by-step guidance on how to use the software easily and effectively for nearly any statistical analysis.

Statistical Analysis of Medical Data Using SAS

Author: Geoff Der
Publisher: CRC Press
ISBN: 9781584884699
Format: PDF
Download Now
Statistical analysis is ubiquitous in modern medical research. Logistic regression, generalized linear models, random effects models, and Cox's regression all have become commonplace in the medical literature. But while statistical software such as SAS make routine application of these techniques possible, users who are not primarily statisticians must take care to correctly implement the various procedures and correctly interpret the output. Statistical Analysis of Medical Data Using SAS demonstrates how to use SAS to analyze medical data. Each chapter addresses a particular analysis method. The authors briefly describe each procedure, but focus on its SAS implementation and properly interpreting the output. The carefully designed presentation relegates the theoretical details to "Displays," so that the code and results can be explored without interruption. All of the code and data sets used in the book are available for download from either the SAS Web site or www.crcpress.com. Der and Everitt, authors of the best-selling Handbook of Statistical Analyses Using SAS, bring all of their considerable talent and experience to bear in this book. Step-by-step instructions, lucid explanations and clear examples combine to form an outstanding, self-contained guide--suitable for medical researchers and statisticians alike--to using SAS to analyze medical data.

Essential Statistics Using SAS University Edition

Author: Geoff Der
Publisher: SAS Institute
ISBN: 1629600946
Format: PDF, Docs
Download Now
Students and instructors of statistics courses using SAS University Edition will welcome this book. Learning fundamental statistics is essential to solving problems with SAS. Essential Statistics Using SAS University Edition demonstrates how to use SAS University Edition to apply a variety of statistical methodologies, from the simple to the not-so-simple, to a range of data sets. Learn how to apply the appropriate statistical method to answer a particular question about a data set, and correctly interpret the numerical results that you obtain. SAS University Edition users who are new to SAS or who need a refresher course will benefit from the statistics overview and topics, such as multiple linear regression, logistic regression, and Poisson regression.

Applied Medical Statistics Using SAS

Author: Geoff Der
Publisher: CRC Press
ISBN: 1439867984
Format: PDF
Download Now
Written with medical statisticians and medical researchers in mind, this intermediate-level reference explores the use of SAS for analyzing medical data. Applied Medical Statistics Using SAS covers the whole range of modern statistical methods used in the analysis of medical data, including regression, analysis of variance and covariance, longitudinal and survival data analysis, missing data, generalized additive models (GAMs), and Bayesian methods. The book focuses on performing these analyses using SAS, the software package of choice for those analysing medical data. Features Covers the planning stage of medical studies in detail; several chapters contain details of sample size estimation Illustrates methods of randomisation that might be employed for clinical trials Covers topics that have become of great importance in the 21st century, including Bayesian methods and multiple imputation Its breadth and depth, coupled with the inclusion of all the SAS code, make this book ideal for practitioners as well as for a graduate class in biostatistics or public health. Complete data sets, all the SAS code, and complete outputs can be found on an associated website: http://support.sas.com/amsus

Handbook of Statistical Analysis and Data Mining Applications

Author: Robert Nisbet
Publisher: Elsevier
ISBN: 0124166458
Format: PDF, ePub, Docs
Download Now
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Handbook of Statistical Analyses Using Stata Fourth Edition

Author: Brian S. Everitt
Publisher: CRC Press
ISBN: 9781584887560
Format: PDF, Kindle
Download Now
With each new release of Stata, a comprehensive resource is needed to highlight the improvements as well as discuss the fundamentals of the software. Fulfilling this need, A Handbook of Statistical Analyses Using Stata, Fourth Edition has been fully updated to provide an introduction to Stata version 9. This edition covers many new features of Stata, including a new command for mixed models and a new matrix language. Each chapter describes the analysis appropriate for a particular application, focusing on the medical, social, and behavioral fields. The authors begin each chapter with descriptions of the data and the statistical techniques to be used. The methods covered include descriptives, simple tests, variance analysis, multiple linear regression, logistic regression, generalized linear models, survival analysis, random effects models, and cluster analysis. The core of the book centers on how to use Stata to perform analyses and how to interpret the results. The chapters conclude with several exercises based on data sets from different disciplines. A concise guide to the latest version of Stata, A Handbook of Statistical Analyses Using Stata, Fourth Edition illustrates the benefits of using Stata to perform various statistical analyses for both data analysis courses and self-study.

Handbook of SAS DATA Step Programming

Author: Arthur Li
Publisher: CRC Press
ISBN: 9781466552388
Format: PDF
Download Now
To write an accomplished program in the DATA step of SAS®, programmers must understand programming logic and know how to implement and even create their own programming algorithm. Handbook of SAS® DATA Step Programming shows readers how best to manage and manipulate data by using the DATA step. The book helps novices avoid common mistakes resulting from a lack of understanding fundamental and unique SAS programming concepts. It explains that learning syntax does not solve all problems; rather, a thorough comprehension of SAS processing is needed for successful programming. The author also guides readers through a programming task. In most of the examples, the author first presents strategies and steps for solving the problem, then offers a solution, and finally gives a more detailed explanation of the solution. Understanding the DATA steps, particularly the program data vector (PDV), is critical to proper data manipulation and management in SAS. This book helps SAS programmers thoroughly grasp the concept of DATA step processing and write accurate programs in the DATA step. Numerous supporting materials, including data sets and programs used in the text, are available on the book’s CRC Press web page.

The Little SAS Book

Author: Lora D. Delwiche
Publisher: SAS Institute
ISBN: 1612904009
Format: PDF
Download Now
A classic that just keeps getting better, The Little SAS Book is essential for anyone learning SAS programming. Lora Delwiche and Susan Slaughter offer a user-friendly approach so readers can quickly and easily learn the most commonly used features of the SAS language. Each topic is presented in a self-contained two-page layout complete with examples and graphics. The fifth edition has been completely updated to reflect the new default output introduced with SAS 9.3. In addition, there is a now a full chapter devoted to ODS Graphics including the SGPLOT and SGPANEL procedures. Other changes include expanded coverage of linguistic sorting and a new section on concatenating macro variables with other text. This book is a great tool for users of SAS 9.4 as well. This title belongs on every SAS programmer's bookshelf. It's a resource not just to get you started, but one you'll return to as you continue to improve your programming skills. This book is part of the SAS Press program.

JMP Start Statistics

Author: John Sall
Publisher: SAS Institute
ISBN: 1629608769
Format: PDF, ePub
Download Now
This book provides hands-on tutorials with just the right amount of conceptual and motivational material to illustrate how to use the intuitive interface for data analysis in JMP. Each chapter features concept-specific tutorials, examples, brief reviews of concepts, step-by-step illustrations, and exercises. Updated for JMP 13, JMP Start Statistics, Sixth Edition includes many new features, including: The redesigned Formula Editor. New and improved ways to create formulas in JMP directly from the data table or dialogs. Interface updates, including improved menu layout. Updates and enhancements in many analysis platforms. New ways to get data into JMP and to save and share JMP results. Many new features that make it easier to use JMP.