Adaptive Learning Methods for Nonlinear System Modeling

Author: Danilo Comminiello
Publisher: Butterworth-Heinemann
ISBN: 0128129778
Format: PDF, ePub, Docs
Download Now
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.

Adaptive Learning of Polynomial Networks

Author: Nikolay Nikolaev
Publisher: Springer Science & Business Media
ISBN: 0387312404
Format: PDF, ePub, Docs
Download Now
This book delivers theoretical and practical knowledge for developing algorithms that infer linear and non-linear multivariate models, providing a methodology for inductive learning of polynomial neural network models (PNN) from data. The text emphasizes an organized model identification process by which to discover models that generalize and predict well. The book further facilitates the discovery of polynomial models for time-series prediction.

Intelligent Industrial Systems Modeling Automation and Adaptive Behavior

Author: Rigatos, Gerasimos
Publisher: IGI Global
ISBN: 161520850X
Format: PDF, ePub, Mobi
Download Now
In recent years, there has been growing interest in industrial systems, especially in robotic manipulators and mobile robot systems. As the cost of robots goes down and become more compact, the number of industrial applications of robotic systems increases. Moreover, there is need to design industrial systems with intelligence, autonomous decision making capabilities, and self-diagnosing properties. Intelligent Industrial Systems: Modeling, Automation and Adaptive Behavior analyzes current trends in industrial systems design, such as intelligent, industrial, and mobile robotics, complex electromechanical systems, fault diagnosis and avoidance of critical conditions, optimization, and adaptive behavior. This book discusses examples from major areas of research for engineers and researchers, providing an extensive background on robotics and industrial systems with intelligence, autonomy, and adaptive behavior giving emphasis to industrial systems design.

Computer Software Structures Integrating AI KBS Systems in Process Control

Author: K.-E. Arzen
Publisher: Elsevier
ISBN: 1483297616
Format: PDF, Kindle
Download Now
The past few years have seen rapid developments in computer technology, giving rise to a range of system control options which can be applied in the process industries. These include; open systems, expert systems, neural networks, fuzzy systems and object-oriented systems, all of which are covered in this key volume, which provides an invaluable summary of the latest international research in this area.

Adaptive Nonlinear System Identification

Author: Tokunbo Ogunfunmi
Publisher: Springer Science & Business Media
ISBN: 0387686304
Format: PDF, Kindle
Download Now
Focuses on System Identification applications of the adaptive methods presented. but which can also be applied to other applications of adaptive nonlinear processes. Covers recent research results in the area of adaptive nonlinear system identification from the authors and other researchers in the field.

Life System Modeling and Intelligent Computing

Author: Kang Li
Publisher: Springer Science & Business Media
ISBN: 3642158587
Format: PDF
Download Now
The 2010 International Conference on Life System Modeling and Simulation (LSMS 2010) and the 2010 International Conference on Intelligent Computing for Susta- able Energy and Environment (ICSEE 2010) were formed to bring together resear- ers and practitioners in the fields of life system modeling/simulation and intelligent computing applied to worldwide sustainable energy and environmental applications. A life system is a broad concept, covering both micro and macro components ra- ing from cells, tissues and organs across to organisms and ecological niches. To c- prehend and predict the complex behavior of even a simple life system can be - tremely difficult using conventional approaches. To meet this challenge, a variety of new theories and methodologies have emerged in recent years on life system mod- ing and simulation. Along with improved understanding of the behavior of biological systems, novel intelligent computing paradigms and techniques have emerged to h- dle complicated real-world problems and applications. In particular, intelligent c- puting approaches have been valuable in the design and development of systems and facilities for achieving sustainable energy and a sustainable environment, the two most challenging issues currently facing humanity. The two LSMS 2010 and ICSEE 2010 conferences served as an important platform for synergizing these two research streams.

Nonlinear System Identification

Author: Oliver Nelles
Publisher: Springer Science & Business Media
ISBN: 9783540673699
Format: PDF, ePub
Download Now
The goal of this book is to provide engineers and scientIsts in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. The reader will be able to apply the discussed models and methods to real problems with the necessary confidence and the awareness of potential difficulties that may arise in practice. This book is self-contained in the sense that it requires merely basic knowledge of matrix algebra, signals and systems, and statistics. Therefore, it also serves as an introduction to linear system identification and gives a practical overview on the major optimization methods used in engineering. The emphasis of this book is on an intuitive understanding of the subject and the practical application of the discussed techniques. It is not written in a theorem/proof style; rather the mathematics is kept to a minimum and the pursued ideas are illustrated by numerous figures, examples, and real-world applications. Fifteen years ago, nonlinear system identification was a field of several ad-hoc approaches, each applicable only to a very restricted class of systems. With the advent of neural networks, fuzzy models, and modern structure opti mization techniques a much wider class of systems can be handled. Although one major characteristic of nonlinear systems is that almost every nonlinear system is unique, tools have been developed that allow the use of the same ap proach for a broad variety of systems.

Advances in Neural Networks ISNN 2007

Author: Derong Liu
Publisher: Springer Science & Business Media
ISBN: 3540723943
Format: PDF, ePub, Mobi
Download Now
The three volume set LNCS 4491/4492/4493 constitutes the refereed proceedings of the 4th International Symposium on Neural Networks, ISNN 2007, held in Nanjing, China in June 2007. The 262 revised long papers and 192 revised short papers presented were carefully reviewed and selected from a total of 1.975 submissions. The papers are organized in topical sections on neural fuzzy control, neural networks for control applications, adaptive dynamic programming and reinforcement learning, neural networks for nonlinear systems modeling, robotics, stability analysis of neural networks, learning and approximation, data mining and feature extraction, chaos and synchronization, neural fuzzy systems, training and learning algorithms for neural networks, neural network structures, neural networks for pattern recognition, SOMs, ICA/PCA, biomedical applications, feedforward neural networks, recurrent neural networks, neural networks for optimization, support vector machines, fault diagnosis/detection, communications and signal processing, image/video processing, and applications of neural networks.

Artificial Neural Networks for Modelling and Control of Non Linear Systems

Author: Johan A.K. Suykens
Publisher: Springer Science & Business Media
ISBN: 9780792396789
Format: PDF, ePub
Download Now
Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required. The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos. The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLq emTheory, that have applications in control theory, system theory, circuit theory and Time Series Analysis.