Advanced Calculus

Author: James J. Callahan
Publisher: Springer Science & Business Media
ISBN: 9781441973320
Format: PDF, Mobi
Download Now
With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.

Advanced Calculus

Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Format: PDF, ePub
Download Now
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Advanced Calculus

Author: Harold M. Edwards
Publisher: Springer Science & Business Media
ISBN: 0817684123
Format: PDF, ePub, Mobi
Download Now
In a book written for mathematicians, teachers of mathematics, and highly motivated students, Harold Edwards has taken a bold and unusual approach to the presentation of advanced calculus. He begins with a lucid discussion of differential forms and quickly moves to the fundamental theorems of calculus and Stokes’ theorem. The result is genuine mathematics, both in spirit and content, and an exciting choice for an honors or graduate course or indeed for any mathematician in need of a refreshingly informal and flexible reintroduction to the subject. For all these potential readers, the author has made the approach work in the best tradition of creative mathematics. This affordable softcover reprint of the 1994 edition presents the diverse set of topics from which advanced calculus courses are created in beautiful unifying generalization. The author emphasizes the use of differential forms in linear algebra, implicit differentiation in higher dimensions using the calculus of differential forms, and the method of Lagrange multipliers in a general but easy-to-use formulation. There are copious exercises to help guide the reader in testing understanding. The chapters can be read in almost any order, including beginning with the final chapter that contains some of the more traditional topics of advanced calculus courses. In addition, it is ideal for a course on vector analysis from the differential forms point of view. The professional mathematician will find here a delightful example of mathematical literature; the student fortunate enough to have gone through this book will have a firm grasp of the nature of modern mathematics and a solid framework to continue to more advanced studies. The most important feature...is that it is fun—it is fun to read the exercises, it is fun to read the comments printed in the margins, it is fun simply to pick a random spot in the book and begin reading. This is the way mathematics should be presented, with an excitement and liveliness that show why we are interested in the subject. —The American Mathematical Monthly (First Review) An inviting, unusual, high-level introduction to vector calculus, based solidly on differential forms. Superb exposition: informal but sophisticated, down-to-earth but general, geometrically rigorous, entertaining but serious. Remarkable diverse applications, physical and mathematical. —The American Mathematical Monthly (1994) Based on the Second Edition

Advanced Calculus

Author: John Srdjan Petrovic
Publisher: CRC Press
ISBN: 1466565640
Format: PDF
Download Now
Suitable for a one- or two-semester course, Advanced Calculus: Theory and Practice expands on the material covered in elementary calculus and presents this material in a rigorous manner. The text improves students’ problem-solving and proof-writing skills, familiarizes them with the historical development of calculus concepts, and helps them understand the connections among different topics. The book takes a motivating approach that makes ideas less abstract to students. It explains how various topics in calculus may seem unrelated but in reality have common roots. Emphasizing historical perspectives, the text gives students a glimpse into the development of calculus and its ideas from the age of Newton and Leibniz to the twentieth century. Nearly 300 examples lead to important theorems as well as help students develop the necessary skills to closely examine the theorems. Proofs are also presented in an accessible way to students. By strengthening skills gained through elementary calculus, this textbook leads students toward mastering calculus techniques. It will help them succeed in their future mathematical or engineering studies.

Advanced Calculus

Author: Avner Friedman
Publisher: Courier Corporation
ISBN: 0486137864
Format: PDF, Docs
Download Now
Intended for students who have already completed a one-year course in elementary calculus, this two-part treatment advances from functions of one variable to those of several variables. Solutions. 1971 edition.

A Course in Advanced Calculus

Author: Robert S. Borden
Publisher: Courier Corporation
ISBN: 0486150380
Format: PDF, ePub, Mobi
Download Now
An excellent undergraduate text examines sets and structures, limit and continuity in En, measure and integration, differentiable mappings, sequences and series, applications of improper integrals, more. Problems with tips and solutions for some.

Advanced Calculus

Author: Patrick Fitzpatrick
Publisher: American Mathematical Soc.
ISBN: 9780821847916
Format: PDF, ePub
Download Now
Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables. Special attention has been paid to the motivation for proofs. Selected topics, such as the Picard Existence Theorem for differential equations, have been included in such a way that selections may be made while preserving a fluid presentation of the essential material. Supplemented with numerous exercises, Advanced Calculus is a perfect book for undergraduate students of analysis.

Advanced Calculus of Several Variables

Author: C. H. Edwards
Publisher: Courier Corporation
ISBN: 0486131955
Format: PDF, Docs
Download Now
Modern conceptual treatment of multivariable calculus, emphasizing interplay of geometry and analysis via linear algebra and the approximation of nonlinear mappings by linear ones. Over 400 well-chosen problems. 1973 edition.

Advanced Calculus

Author: Joseph B. Dence
Publisher: Academic Press
ISBN: 012384696X
Format: PDF, Kindle
Download Now
Designed for a one-semester advanced calculus course, "Advanced Calculus" explores the theory of calculus and highlights the connections between calculus and real analysis -- providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. Ancillary list: * Companion website, Ebook- http: //www.elsevierdirect.com/product.jsp?isbn=9780123749550 * Student Solutions Manual- To come * Instructors Solutions Manual- To come Appropriate rigor for a one-semester advanced calculus course Presents modern materials and nontraditional ways of stating and proving some resultsIncludes precise historical notes throughout the book outstanding feature is the collection of exercises in each chapterProvides coverage of exponential function, and the development of trigonometric functions from the integral