Financial Mathematics

Author: Giuseppe Campolieti
Publisher: CRC Press
ISBN: 1439892423
Format: PDF, Docs
Download Now
Versatile for Several Interrelated Courses at the Undergraduate and Graduate Levels Financial Mathematics: A Comprehensive Treatment provides a unified, self-contained account of the main theory and application of methods behind modern-day financial mathematics. Tested and refined through years of the authors’ teaching experiences, the book encompasses a breadth of topics, from introductory to more advanced ones. Accessible to undergraduate students in mathematics, finance, actuarial science, economics, and related quantitative areas, much of the text covers essential material for core curriculum courses on financial mathematics. Some of the more advanced topics, such as formal derivative pricing theory, stochastic calculus, Monte Carlo simulation, and numerical methods, can be used in courses at the graduate level. Researchers and practitioners in quantitative finance will also benefit from the combination of analytical and numerical methods for solving various derivative pricing problems. With an abundance of examples, problems, and fully worked out solutions, the text introduces the financial theory and relevant mathematical methods in a mathematically rigorous yet engaging way. Unlike similar texts in the field, this one presents multiple problem-solving approaches, linking related comprehensive techniques for pricing different types of financial derivatives. The book provides complete coverage of both discrete- and continuous-time financial models that form the cornerstones of financial derivative pricing theory. It also presents a self-contained introduction to stochastic calculus and martingale theory, which are key fundamental elements in quantitative finance.

Credit Securitisations and Derivatives

Author: Daniel Rösch
Publisher: John Wiley & Sons
ISBN: 1119966043
Format: PDF, ePub
Download Now
A comprehensive resource providing extensive coverage of the state of the art in credit secruritisations, derivatives, and risk management Credit Securitisations and Derivatives is a one-stop resource presenting the very latest thinking and developments in the field of credit risk. Written by leading thinkers from academia, the industry, and the regulatory environment, the book tackles areas such as business cycles; correlation modelling and interactions between financial markets, institutions, and instruments in relation to securitisations and credit derivatives; credit portfolio risk; credit portfolio risk tranching; credit ratings for securitisations; counterparty credit risk and clearing of derivatives contracts and liquidity risk. As well as a thorough analysis of the existing models used in the industry, the book will also draw on real life cases to illustrate model performance under different parameters and the impact that using the wrong risk measures can have.

The Heston Model and Its Extensions in VBA

Author: Fabrice D. Rouah
Publisher: John Wiley & Sons
ISBN: 1119003318
Format: PDF, ePub
Download Now
Practical options pricing for better-informed investment decisions. The Heston Model and Its Extensions in VBA is the definitive guide to options pricing using two of the derivatives industry's most powerful modeling tools—the Heston model, and VBA. Light on theory, this extremely useful reference focuses on implementation, and can help investors more efficiently—and accurately—exploit market information to better inform investment decisions. Coverage includes a description of the Heston model, with specific emphasis on equity options pricing and variance modeling, The book focuses not only on the original Heston model, but also on the many enhancements and refinements that have been applied to the model, including methods that use the Fourier transform, numerical integration schemes, simulation, methods for pricing American options, and much more. The companion website offers pricing code in VBA that resides in an extensive set of Excel spreadsheets. The Heston model is the derivatives industry's most popular stochastic volatility model for pricing equity derivatives. This book provides complete guidance toward the successful implementation of this valuable model using the industry's ubiquitous financial modeling software, giving users the understanding—and VBA code—they need to produce option prices that are more accurate, and volatility surfaces that more closely reflect market conditions. Derivatives pricing is often the hinge on which profit is made or lost in financial institutions, making accuracy of utmost importance. This book will help risk managers, traders, portfolio managers, quants, academics and other professionals better understand the Heston model and its extensions, in a writing style that is clear, concise, transparent and easy to understand. For better pricing accuracy, The Heston Model and Its Extensions in VBA is a crucial resource for producing more accurate model outputs such as prices, hedge ratios, volatilities, and graphs.

The Heston Model and its Extensions in Matlab and C

Author: Fabrice D. Rouah
Publisher: John Wiley & Sons
ISBN: 1118695178
Format: PDF, ePub
Download Now
Tap into the power of the most popular stochastic volatility model for pricing equity derivatives Since its introduction in 1993, the Heston model has become a popular model for pricing equity derivatives, and the most popular stochastic volatility model in financial engineering. This vital resource provides a thorough derivation of the original model, and includes the most important extensions and refinements that have allowed the model to produce option prices that are more accurate and volatility surfaces that better reflect market conditions. The book's material is drawn from research papers and many of the models covered and the computer codes are unavailable from other sources. The book is light on theory and instead highlights the implementation of the models. All of the models found here have been coded in Matlab and C#. This reliable resource offers an understanding of how the original model was derived from Ricatti equations, and shows how to implement implied and local volatility, Fourier methods applied to the model, numerical integration schemes, parameter estimation, simulation schemes, American options, the Heston model with time-dependent parameters, finite difference methods for the Heston PDE, the Greeks, and the double Heston model. A groundbreaking book dedicated to the exploration of the Heston model—a popular model for pricing equity derivatives Includes a companion website, which explores the Heston model and its extensions all coded in Matlab and C# Written by Fabrice Douglas Rouah a quantitative analyst who specializes in financial modeling for derivatives for pricing and risk management Engaging and informative, this is the first book to deal exclusively with the Heston Model and includes code in Matlab and C# for pricing under the model, as well as code for parameter estimation, simulation, finite difference methods, American options, and more.

Principles of Financial Engineering

Author: Robert Kosowski
Publisher: Academic Press
ISBN: 0123870070
Format: PDF, Kindle
Download Now
Principles of Financial Engineering, Third Edition, is a highly acclaimed text on the fast-paced and complex subject of financial engineering. This updated edition describes the "engineering" elements of financial engineering instead of the mathematics underlying it. It shows how to use financial tools to accomplish a goal rather than describing the tools themselves. It lays emphasis on the engineering aspects of derivatives (how to create them) rather than their pricing (how they act) in relation to other instruments, the financial markets, and financial market practices. This volume explains ways to create financial tools and how the tools work together to achieve specific goals. Applications are illustrated using real-world examples. It presents three new chapters on financial engineering in topics ranging from commodity markets to financial engineering applications in hedge fund strategies, correlation swaps, structural models of default, capital structure arbitrage, contingent convertibles, and how to incorporate counterparty risk into derivatives pricing. Poised midway between intuition, actual events, and financial mathematics, this book can be used to solve problems in risk management, taxation, regulation, and above all, pricing. A solutions manual enhances the text by presenting additional cases and solutions to exercises. This latest edition of Principles of Financial Engineering is ideal for financial engineers, quantitative analysts in banks and investment houses, and other financial industry professionals. It is also highly recommended to graduate students in financial engineering and financial mathematics programs. The Third Edition presents three new chapters on financial engineering in commodity markets, financial engineering applications in hedge fund strategies, correlation swaps, structural models of default, capital structure arbitrage, contingent convertibles and how to incorporate counterparty risk into derivatives pricing, among other topics. Additions, clarifications, and illustrations throughout the volume show these instruments at work instead of explaining how they should act The solutions manual enhances the text by presenting additional cases and solutions to exercises

Rating Based Modeling of Credit Risk

Author: Stefan Trueck
Publisher: Academic Press
ISBN: 9780080920306
Format: PDF
Download Now
In the last decade rating-based models have become very popular in credit risk management. These systems use the rating of a company as the decisive variable to evaluate the default risk of a bond or loan. The popularity is due to the straightforwardness of the approach, and to the upcoming new capital accord (Basel II), which allows banks to base their capital requirements on internal as well as external rating systems. Because of this, sophisticated credit risk models are being developed or demanded by banks to assess the risk of their credit portfolio better by recognizing the different underlying sources of risk. As a consequence, not only default probabilities for certain rating categories but also the probabilities of moving from one rating state to another are important issues in such models for risk management and pricing. It is widely accepted that rating migrations and default probabilities show significant variations through time due to macroeconomics conditions or the business cycle. These changes in migration behavior may have a substantial impact on the value-at-risk (VAR) of a credit portfolio or the prices of credit derivatives such as collateralized debt obligations (D+CDOs). In Rating Based Modeling of Credit Risk the authors develop a much more sophisticated analysis of migration behavior. Their contribution of more sophisticated techniques to measure and forecast changes in migration behavior as well as determining adequate estimators for transition matrices is a major contribution to rating based credit modeling. Internal ratings-based systems are widely used in banks to calculate their value-at-risk (VAR) in order to determine their capital requirements for loan and bond portfolios under Basel II One aspect of these ratings systems is credit migrations, addressed in a systematic and comprehensive way for the first time in this book The book is based on in-depth work by Trueck and Rachev

Financial Modelling

Author: Joerg Kienitz
Publisher: John Wiley & Sons
ISBN: 1118413296
Format: PDF, Mobi
Download Now
Financial Modelling - Theory, Implementation and Practice is a unique combination of quantitative techniques, the application to financial problems and programming using Matlab. The book enables the reader to model, design and implement a wide range of financial models for derivatives pricing and asset allocation, providing practitioners with complete financial modelling workflow, from model choice, deriving prices and Greeks using (semi-) analytic and simulation techniques, and calibration even for exotic options. The book is split into three parts. The first part considers financial markets in general and looks at the complex models needed to handle observed structures, reviewing models based on diffusions including stochastic-local volatility models and (pure) jump processes. It shows the possible risk neutral densities, implied volatility surfaces, option pricing and typical paths for a variety of models including SABR, Heston, Bates, Bates-Hull-White, Displaced-Heston, or stochastic volatility versions of Variance Gamma, respectively Normal Inverse Gaussian models and finally, multi-dimensional models. The stochastic-local-volatility Libor market model with time-dependent parameters is considered and as an application how to price and risk-manage CMS spread products is demonstrated. The second part of the book deals with numerical methods which enables the reader to use the models of the first part for pricing and risk management, covering methods based on direct integration and Fourier transforms, and detailing the implementation of the COS, CONV, Carr-Madan method or Fourier-Space-Time Stepping. This is applied to pricing of European, Bermudan and exotic options as well as the calculation of the Greeks. The Monte Carlo simulation technique is outlined and bridge sampling is discussed in a Gaussian setting and for Lévy processes. Computation of Greeks is covered using likelihood ratio methods and adjoint techniques. A chapter on state-of-the-art optimization algorithms rounds up the toolkit for applying advanced mathematical models to financial problems and the last chapter in this section of the book also serves as an introduction to model risk. The third part is devoted to the usage of Matlab, introducing the software package by describing the basic functions applied for financial engineering. The programming is approached from an object-oriented perspective with examples to propose a framework for calibration, hedging and the adjoint method for calculating Greeks in a Libor Market model. Source code used for producing the results and analysing the models is provided on the author’s dedicated website, http://www.mathworks.de/matlabcentral/fileexchange/authors/246981

Simulation and Optimization in Finance

Author: Dessislava A. Pachamanova
Publisher: John Wiley & Sons
ISBN: 9780470882122
Format: PDF, ePub
Download Now
An introduction to the theory and practice of financial simulation and optimization In recent years, there has been a notable increase in the use of simulation and optimization methods in the financial industry. Applications include portfolio allocation, risk management, pricing, and capital budgeting under uncertainty. This accessible guide provides an introduction to the simulation and optimization techniques most widely used in finance, while at the same time offering background on the financial concepts in these applications. In addition, it clarifies difficult concepts in traditional models of uncertainty in finance, and teaches you how to build models with software. It does this by reviewing current simulation and optimization methodology-along with available software-and proceeds with portfolio risk management, modeling of random processes, pricing of financial derivatives, and real options applications. Contains a unique combination of finance theory and rigorous mathematical modeling emphasizing a hands-on approach through implementation with software Highlights not only classical applications, but also more recent developments, such as pricing of mortgage-backed securities Includes models and code in both spreadsheet-based software (@RISK, Solver, Evolver, VBA) and mathematical modeling software (MATLAB) Filled with in-depth insights and practical advice, Simulation and Optimization Modeling in Finance offers essential guidance on some of the most important topics in financial management.

Mathematical Techniques in Finance

Author: Ales Cerný
Publisher: Princeton University Press
ISBN: 1400831482
Format: PDF, ePub, Mobi
Download Now
Originally published in 2003, Mathematical Techniques in Finance has become a standard textbook for master's-level finance courses containing a significant quantitative element while also being suitable for finance PhD students. This fully revised second edition continues to offer a carefully crafted blend of numerical applications and theoretical grounding in economics, finance, and mathematics, and provides plenty of opportunities for students to practice applied mathematics and cutting-edge finance. Ales Cerný mixes tools from calculus, linear algebra, probability theory, numerical mathematics, and programming to analyze in an accessible way some of the most intriguing problems in financial economics. The textbook is the perfect hands-on introduction to asset pricing, optimal portfolio selection, risk measurement, and investment evaluation. The new edition includes the most recent research in the area of incomplete markets and unhedgeable risks, adds a chapter on finite difference methods, and thoroughly updates all bibliographic references. Eighty figures, over seventy examples, twenty-five simple ready-to-run computer programs, and several spreadsheets enhance the learning experience. All computer codes have been rewritten using MATLAB and online supplementary materials have been completely updated. A standard textbook for graduate finance courses Introduction to asset pricing, portfolio selection, risk measurement, and investment evaluation Detailed examples and MATLAB codes integrated throughout the text Exercises and summaries of main points conclude each chapter