Advanced Geotechnical Analyses

Author: P.K. Banerjee
Publisher: CRC Press
ISBN: 1851666230
Format: PDF, Mobi
Download Now
The chapters in this book show that a careful blend of engineering judgement and advanced principles of engineering mechanics may be used to resolve many complex geotechnical engineering problems. It is hoped that these may inspire the geotechnical engineering practice to make more extensive use of them in future.

Finite Element Analysis in Geotechnical Engineering

Author: David M. Potts
Publisher: Thomas Telford
ISBN: 9780727727831
Format: PDF, ePub
Download Now
This comprehensive new two-volume work provides the reader with a detailed insight into the use of the finite element method in geotechnical engineering. As specialist knowledge required to perform geotechnical finite element analysis is not normally part of a single engineering degree course, this lucid work will prove invaluable. It brings together essential information presented in a manner understandable to most engineers. Volume 1 presents the theory, assumptions and approximations involved in finite element analysis while Volume 2 concentrates on its practical applications to real geotechnical problems. The theory explored in the first volume is referred to in the case studies of the second volume to provide a holistic impression of finite element analysis as it is applied in geotechncial engineering. Using practical examples, the second volume illustrates the restrictions, pitfalls, advantages and disadvantages of numerical analysis. The authors examine popular constitutive models, numerical techniques and case studies. Together, both volumes aim to provide the reader with sufficient knowledge to judge the credibility of the numerical results that the reader may obtain, or review, in the future. Finite element analysis in geotechnical engineering: theory and application will be essential reading for practising geotechnical and structural engineers and researchers, particularly users of commercial finite element software, both in industry and in academia. Students performing project work at undergraduate and postgraduate level will also find this book invaluable.

Advances in Geotechnical Engineering

Author: D. M. Potts
Publisher: Thomas Telford
ISBN: 9780727732644
Format: PDF
Download Now
This two volume set presenting the proceedings of the Skempton Memorial Conference on Advances in Geotechnical Engineering held at the Royal Geographical Society, London, on 29-31 March 2004. With the conference's commemorative theme, the first volume reprints the Royal Society of London's short biographical memoir on ansi-Professor Sir Alec Skempton and offers a set of invited articles that reflect on his contributions to engineering geology, slope stability and the history of civil engineering. This comprehensive set reviews and discusses the most recent advances in geotechnics, focusing on Professor Sir Alec Skempton's favourite subjects, will be an invaluable resource for geotechnical engineers.

From Soil Behavior Fundamentals to Innovations in Geotechnical Engineering

Author: Roy Edwin Olson
Publisher: Amer Society of Civil Engineers
ISBN: 9780784413265
Format: PDF, Mobi
Download Now
From Soil Behavior Fundamentals to Innovations in Geotechnical Engineering GSP 233 honors the technical contribution of Roy Olson Ph.D. P.E. NAE Distinguished Member ASCE. This Geotechnical Special Publication contains a total of 51 papers 21 authored or co-authored by Prof. Olson along with 30 peer-reviewed contemporary invited or submitted papers. Olson's early work dealt with clay behavior consolidation analyses and compaction of unsaturated soils. His later work focused on applications of soil behavior in foundation and forensic engineering including axial capacity of piles in sand and clay pull out capacity of suction caisson foundations and failures of excavations and bulkhead structures. Contemporary innovations discussed in papers contributed to this volume include developments in consolidation analyses modeling of shear strength measurements of permeability and interpretation of in-situ tests.Lessons learned from failures along with recent developments in foundation engineering such as characterization of energy piles calculation of settlement from dynamic soil properties developments in finite element modeling of foundations mechanism of failure of jacked piles mitigation of piling noise and field load tests on a variety of foundations are also included. From Soil Behavior Fundamentals to Innovations in Geotechnical Engineering contains practical and technical information on soil behavior fundamentals and current applications in geotechnical engineering that will be of interest to educators researchers and practicing geotechnical engineers.

Limit Analysis in Soil Mechanics

Author: W.F. Chen
Publisher: Elsevier
ISBN: 0444598359
Format: PDF
Download Now
During the last ten years, our understanding of the perfect plasticity and the associated flow rule assumption on which limit analysis is based has increased considerably. Many extensions and advances have been made in applications of limit analysis to the area of soil dynamics, in particular, to earthquake-induced slope failure and landslide problems and to earthquake-induced lateral earth pressures on rigid retaining structures. The purpose of the book therefore is in part to discuss the validity of the upper bound work (or energy) method of limit analysis in a form that can be appreciated by a practicing soil engineer, and in part to provide a compact and up-to-date summary of recent advances in the applications of limit analysis to earthquake-induced stability problems in soil mechanics.

Nonlinear Analysis in Soil Mechanics

Author: Wai-Fah Chen
Publisher: Elsevier Science
ISBN:
Format: PDF, ePub, Docs
Download Now
Hardbound. With the present state of development of finite element computer software and high-speed digital computer hardware, an almost unlimited number of solutions to soil mechanics and soil structure interaction problems can now be obtained. These are not limited to linear elastic small deformation solid mechanics, but can be extended to include problems of various kinds involving material and geometric nonlinearities. This book is concerned with the development of numerical tools for solutions of nonlinear analysis problems in soil mechanics.

Frontiers in Civil Engineering

Author: Y.M. Cheng
Publisher: Bentham Science Publishers
ISBN: 1681083035
Format: PDF, ePub, Mobi
Download Now
Stability of Geotechnical Structures: Theoretical and Numerical Analysis is a comprehensive introduction to the theory and applications of soil mechanics in structural stability. Chapters explain different mathematical methods to calculate structural stability metrics. Topics covered in the book include upper and lower bound methods, kinematic methods, slip line methods, limit analysis, limit equilibrium, and element methods. Additionally, fundamental principles in plasticity formulation are discussed in sufficient details, and sample computer programs are included to aid the readers in learning the presented theoretical material. The book also features worked examples for easy understanding. Theoretical material in the book is based on actual research conducted by the authors, with additional literature reviews and discussions about important topics in geotechnical engineering. Stability of Geotechnical Structures: Theoretical and Numerical Analysis is suitable for students undertaking advanced foundation or geotechnical engineering courses at undergraduate or postgraduate levels. Frontiers in Civil Engineering brings scholarly references on all topics related to civil engineering to the fore. Each volume presents thematic information on theoretical frameworks and practical applications in the field, including (but not limited to) soil and rock mechanics, flood control, road and railway engineering, and the construction of large buildings, bridges and dams. The series aims to compile and present useful information in the form of handbooks and monographs for students involved in technical courses in addition to providing updated references for professional engineers about the latest trends in civil engineering. Close

Plasticity and Geotechnics

Author: Hai-Sui Yu
Publisher: Springer Science & Business Media
ISBN: 0387335994
Format: PDF
Download Now
Plasticity and Geotechnics is the first attempt to summarize and present in a single volume the major achievements in the field of plasticity theory for geotechnical materials and its applications to geotechnical analysis and design. The book emerges from the author’s belief that there is an urgent need for the geotechnical and solid mechanics community to have a unified presentation of plasticity theory and its application to geotechnical engineering.

Risk and Reliability in Geotechnical Engineering

Author: Kok-Kwang Phoon
Publisher: CRC Press
ISBN: 1482227223
Format: PDF, ePub
Download Now
Establishes Geotechnical Reliability as Fundamentally Distinct from Structural Reliability Reliability-based design is relatively well established in structural design. Its use is less mature in geotechnical design, but there is a steady progression towards reliability-based design as seen in the inclusion of a new Annex D on "Reliability of Geotechnical Structures" in the third edition of ISO 2394. Reliability-based design can be viewed as a simplified form of risk-based design where different consequences of failure are implicitly covered by the adoption of different target reliability indices. Explicit risk management methodologies are required for large geotechnical systems where soil and loading conditions are too varied to be conveniently slotted into a few reliability classes (typically three) and an associated simple discrete tier of target reliability indices. Provides Realistic Practical Guidance Risk and Reliability in Geotechnical Engineering makes these reliability and risk methodologies more accessible to practitioners and researchers by presenting soil statistics which are necessary inputs, by explaining how calculations can be carried out using simple tools, and by presenting illustrative or actual examples showcasing the benefits and limitations of these methodologies. With contributions from a broad international group of authors, this text: Presents probabilistic models suited for soil parameters Provides easy-to-use Excel-based methods for reliability analysis Connects reliability analysis to design codes (including LRFD and Eurocode 7) Maximizes value of information using Bayesian updating Contains efficient reliability analysis methods Accessible To a Wide Audience Risk and Reliability in Geotechnical Engineering presents all the "need-to-know" information for a non-specialist to calculate and interpret the reliability index and risk of geotechnical structures in a realistic and robust way. It suits engineers, researchers, and students who are interested in the practical outcomes of reliability and risk analyses without going into the intricacies of the underlying mathematical theories.

Advanced Geotechnical Engineering

Author: Chandrakant S. Desai
Publisher: CRC Press
ISBN: 1466515619
Format: PDF, ePub, Mobi
Download Now
Soil-structure interaction is an area of major importance in geotechnical engineering and geomechanics Advanced Geotechnical Engineering: Soil-Structure Interaction using Computer and Material Models covers computer and analytical methods for a number of geotechnical problems. It introduces the main factors important to the application of computer methods and constitutive models with emphasis on the behavior of soils, rocks, interfaces, and joints, vital for reliable and accurate solutions. This book presents finite element (FE), finite difference (FD), and analytical methods and their applications by using computers, in conjunction with the use of appropriate constitutive models; they can provide realistic solutions for soil–structure problems. A part of this book is devoted to solving practical problems using hand calculations in addition to the use of computer methods. The book also introduces commercial computer codes as well as computer codes developed by the authors. Uses simplified constitutive models such as linear and nonlinear elastic for resistance-displacement response in 1-D problems Uses advanced constitutive models such as elasticplastic, continued yield plasticity and DSC for microstructural changes leading to microcracking, failure and liquefaction Delves into the FE and FD methods for problems that are idealized as two-dimensional (2-D) and three-dimensional (3-D) Covers the application for 3-D FE methods and an approximate procedure called multicomponent methods Includes the application to a number of problems such as dams , slopes, piles, retaining (reinforced earth) structures, tunnels, pavements, seepage, consolidation, involving field measurements, shake table, and centrifuge tests Discusses the effect of interface response on the behavior of geotechnical systems and liquefaction (considered as a microstructural instability) This text is useful to practitioners, students, teachers, and researchers who have backgrounds in geotechnical, structural engineering, and basic mechanics courses.