Advances in Biodiesel Production

Author: R Luque
Publisher: Elsevier
ISBN: 0857095862
Format: PDF, Kindle
Download Now
Biodiesel is one of the main biofuels capable of substituting fossil fuel usage in compression ignition vehicles, and is used in a variety of fuel blends worldwide. First-generation biodiesel has been used in national markets for some time, with fuel quality standards in place for this purpose. There remain, however, several restrictions to sustainable and long term market development, which is influenced by many factors, including food vs. fuel pressures. The development of new generations of biodiesel, aimed at more sustainable and effective feedstock utilisation alongside improved production efficiency and fuel quality, is critical to the future both of this industry and of the continuing use of biodiesel fuels in transportation. This book provides a timely reference on the advances in the development of biodiesel fuels, production processes and technologies. Part one reviews the life cycle sustainability assessment and socio-economic and environmental policy issues associated with advanced biodiesel production, as well as feedstocks and fuel quality standards. This coverage is extended in Part two, with chapters focussing on the development of methods and catalysts essential to the improvement and optimisation of biodiesel production processes and technologies. With its distinguished editors and international team of contributors, Advances in biodiesel production a standard reference for chemical, biochemical and industrial process engineers, as well as scientists and researchers in this important field. Provides a timely reference on the advances in the development of biodiesel fuels, production processes and technologies Reviews the life cycle sustainability assessment and socio-economic and environmental policy issues associated with advanced biodiesel production, as well as feedstocks and fuel quality standards Discusses the development of methods and catalysts essential to the improvement and optimisation of biodiesel production processes and technologies

Handbook of Biofuels Production

Author: Rafael Luque
Publisher: Elsevier
ISBN: 0857090496
Format: PDF, ePub, Mobi
Download Now
In response to the global increase in the use of biofuels as substitute transportation fuels, advanced chemical, biochemical and thermochemical biofuels production routes are fast being developed. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The range of biofuels has also increased to supplement bioethanol and biodiesel production, with market developments leading to the increased production and utilisation of such biofuels as biosyngas, biohydrogen and biobutanol, among others. Handbook of biofuels production provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Part one reviews the key issues in the biofuels production chain, including feedstocks, sustainability assessment and policy development. Part two reviews chemical and biochemical conversion and in turn Part three reviews thermal and thermo-chemical conversion, with both sections detailing the wide range of processes and technologies applicable to the production of first, second and third generation biofuels. Finally, Part four reviews developments in the integration of biofuels production, including biorefineries and by-product valorisation, as well as the utilisation of biofuels in diesel engines. With its distinguished international team of contributors, Handbook of biofuels production is a standard reference for biofuels production engineers, industrial chemists and biochemists, plant scientists, academics and researchers in this area. A comprehensive and systematic reference on the range of biomass conversion processes and technologies Addresses the key issues in the biofuels production chain, including feedstocks, sustainability assessment and policy development Reviews chemical and bio-chemical conversion techniques as well as thermal and thermo-chemical conversion, detailing the range of processes and technologies applicable to biofuels production

Advances in Biorefineries

Author: Keith W. Waldron
Publisher: Elsevier
ISBN: 0857097385
Format: PDF
Download Now
Biorefineries are an essential technology in converting biomass into biofuels or other useful materials. Advances in Biorefineries provides a comprehensive overview of biorefining processing techniques and technologies, and the biofuels and other materials produced. Part one focuses on methods of optimizing the biorefining process and assessing its environmental and economic impact. It also looks at current and developing technologies for producing value-added materials. Part two goes on to explore these materials with a focus on biofuels and other value-added products. It considers the properties, limitations, and practical applications of these products and how they can be used to meet the increasing demand for renewable and sustainable fuels as an alternative to fossil fuels. Advances in Biorefineries is a vital reference for biorefinery/process engineers, industrial biochemists/chemists, biomass/waste scientists and researchers and academics in the field. A comprehensive and systematic reference on the advanced biomass recovery and conversion processes used in biorefineries Reviews developments in biorefining processes Discusses the wide range of value-added products from biorefineries, from biofuel to biolubricants and bioadhesives

Biodiesel Science and Technology

Author: Jan C.J. Bart
Publisher: Elsevier
ISBN: 1845697766
Format: PDF, Mobi
Download Now
Biodiesel production is a rapidly advancing field worldwide, with biodiesel fuel increasingly being used in compression ignition (diesel) engines. Biodiesel has been extensively studied and utilised in developed countries, and it is increasingly being introduced in developing countries, especially in regions with high potential for sustainable biodiesel production. Initial sections systematically review feedstock resources and vegetable oil formulations, including the economics of vegetable oil conversion to diesel fuel, with additional coverage of emerging energy crops for biodiesel production. Further sections review the transesterification process, including chemical (catalysis) and biochemical (biocatalysis) processes, with extended coverage of industrial process technology and control methods, and standards for biodiesel fuel quality assurance. Final chapters cover the sustainability, performance and environmental issues of biodiesel production, as well as routes to improve glycerol by-product usage and the development of next-generation products. Biodiesel science and technology: From soil to oil provides a comprehensive reference to fuel engineers, researchers and academics on the technological developments involved in improving biodiesel quality and production capacity that are crucial to the future of the industry. Evaluates biodiesel as a renewable energy source and documents global biodiesel development The outlook for biodiesel science and technology is presented exploring the challenges faced by the global diesel industry Reviews feedstock resources and vegetable oil formation including emerging crops and the agronomic potential of underexploited oil crops

Bioenergy Systems for the Future

Author: Francesco Dalena
Publisher: Woodhead Publishing
ISBN: 0081010265
Format: PDF, ePub
Download Now
Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen examines the current advances in biomass conversion technologies for biofuels and biohydrogen production, including their advantages and challenges for real-world application and industrial-scale implementation. In its first part, the book explores the use of lignocellulosic biomass and agricultural wastes as feedstock, also addressing biomass conversion into biofuels, such as bioethanol, biodiesel, bio-methane, and bio-gasoline. The chapters in Part II cover several different pathways for hydrogen production, from biomass, including bioethanol and bio-methane reforming and syngas conversion. They also include a comparison between the most recent conversion technologies and conventional approaches for hydrogen production. Part III presents the status of advanced bioenergy technologies, such as applications of nanotechnology and the use of bio-alcohol in low-temperature fuel cells. The role of advanced bioenergy in a future bioeconomy and the integration of these technologies into existing systems are also discussed, providing a comprehensive, application-oriented overview that is ideal for engineering professionals, researchers, and graduate students involved in bioenergy. Explores the most recent technologies for advanced liquid and gaseous biofuels production, along with their advantages and challenges Presents real-life application of conversion technologies and their integration in existing systems Includes the most promising pathways for sustainable hydrogen production for energy applications

Microalgae Based Biofuels and Bioproducts

Author: Raul Muñoz
Publisher: Woodhead Publishing
ISBN: 0081010273
Format: PDF, ePub
Download Now
Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End Products compiles contributions from authors from different areas and backgrounds who explore the cultivation and utilization of microalgae biomass for sustainable fuels and chemicals. With a strong focus in emerging industrial and large scale applications, the book summarizes the new achievements in recent years in this field by critically evaluating developments in the field of algal biotechnology, whilst taking into account sustainability issues and techno-economic parameters. It includes information on microalgae cultivation, harvesting, and conversion processes for the production of liquid and gaseous biofuels, such as biogas, bioethanol, biodiesel and biohydrogen. Microalgae biorefinery and biotechnology applications, including for pharmaceuticals, its use as food and feed, and value added bioproducts are also covered. This book’s comprehensive scope makes it an ideal reference for both early stage and consolidated researchers, engineers and graduate students in the algal field, especially in energy, chemical and environmental engineering, biotechnology, biology and agriculture. Presents the most current information on the uses and untapped potential of microalgae in the production of bio-based fuels and chemicals Critically reviews the state-of-the-art feedstock cultivation of biofuels and bioproducts mass production from microalgae, including intermediate stages, such as harvesting and extraction of specific compounds Includes topics in economics and sustainability of large-scale microalgae cultivation and conversion technologies

Biomass Supply Chains for Bioenergy and Biorefining

Author: Jens Holm-Nielsen
Publisher: Woodhead Publishing
ISBN: 1782423877
Format: PDF
Download Now
Biomass Supply Chains for Bioenergy and Biorefining highlights the emergence of energy generation through the use of biomass and the ways it is becoming more widely used. The supply chains that produce the feedstocks, harvest, transport, store, and prepare them for combustion or refinement into other forms of fuel are long and complex, often differing from feedstock to feedstock. Biomass Supply Chains for Bioenergy and Biorefining considers every aspect of these supply chains, including their design, management, socioeconomic, and environmental impacts. The first part of the book introduces supply chains, biomass feedstocks, and their analysis, while the second part looks at the harvesting, handling, storage, and transportation of biomass. The third part studies the modeling of supply chains and their management, with the final section discussing, in minute detail, the supply chains involved in the production and usage of individual feedstocks, such as wood and sugar starches, oil crops, industrial biomass wastes, and municipal sewage stocks. Focuses on the complex supply chains of the various potential feedstocks for biomass energy generation Studies a wide range of biomass feedstocks, including woody energy crops, sugar and starch crops, lignocellulosic crops, oil crops, grass crops, algae, and biomass waste Reviews the modeling and optimization, standards, quality control and traceability, socioeconomic, and environmental impacts of supply chains

Bioalcohol Production

Author: Keith W. Waldron
Publisher: Elsevier
ISBN: 1845699610
Format: PDF, Mobi
Download Now
Bioethanol is one of the main biofuels currently used as a petroleum-substitute in transport applications. However, conflicts over food supply and land use have made its production and utilisation a controversial topic. Second generation bioalcohol production technology, based on (bio)chemical conversion of non-food lignocellulose, offers potential advantages over existing, energy-intensive bioethanol production processes. Food vs. fuel pressures may be reduced by utilising a wider range of lignocellulosic biomass feedstocks, including energy crops, cellulosic residues, and, particularly, wastes. Bioalcohol production covers the process engineering, technology, modelling and integration of the entire production chain for second generation bioalcohol production from lignocellulosic biomass. Primarily reviewing bioethanol production, the book’s coverage extends to the production of longer-chain bioalcohols which will be elemental to the future of the industry. Part one reviews the key features and processes involved in the pretreatment and fractionation of lignocellulosic biomass for bioalcohol production, including hydrothermal and thermochemical pretreatment, and fractionation to separate out valuable process feedstocks. Part two covers the hydrolysis (saccharification) processes applicable to pretreated feedstocks. This includes both acid and enzymatic approaches and also importantly covers the development of particular enzymes to improve this conversion step. This coverage is extended in Part three, with chapters reviewing integrated hydrolysis and fermentation processes, and fermentation and co-fermentation challenges of lignocellulose-derived sugars, as well as separation and purification processes for bioalcohol extraction. Part four examines the analysis, monitoring and modelling approaches relating to process and quality control in the pretreatment, hydrolysis and fermentation steps of lignocellulose-to-bioalcohol production. Finally, Part five discusses the life-cycle assessment of lignocellulose-to-bioalcohol production, as well as the production of valuable chemicals and longer-chain alcohols from lignocellulosic biomass. With its distinguished international team of contributors, Bioalcohol production is a standard reference for fuel engineers, industrial chemists and biochemists, plant scientists and researchers in this area. Provides an overview of the life-cycle assessment of lignocelluloses-to-bioalcohol production Reviews the key features and processes involved in the pre-treatment and fractionation of lignocellulosic biomass for bioalcohol production Examines the analysis, monitoring and modelling approaches relating to process and quality control in pre-treatment, hydrolysis and fermentation

Advances in Clean Hydrocarbon Fuel Processing

Author: M. Rashid Khan
Publisher: Elsevier
ISBN: 0857093789
Format: PDF
Download Now
Conventional coal, oil and gas resources used worldwide for power production and transportation are limited and unsustainable. Research and development into clean, alternative hydrocarbon fuels is therefore aimed at improving fuel security through exploring new feedstock conversion techniques, improving production efficiency and reducing environmental impacts. Advances in clean hydrocarbon fuel processing provides a comprehensive and systematic reference on the range of alternative conversion processes and technologies. Following introductory overviews of the feedstocks, environmental issues and life cycle assessment for alternative hydrocarbon fuel processing, sections go on to review solid, liquid and gaseous fuel conversion. Solid fuel coverage includes reviews of liquefaction, gasification, pyrolysis and biomass catalysis. Liquid fuel coverage includes reviews of sulfur removal, partial oxidation and hydroconversion. Gaseous fuel coverage includes reviews of Fischer-Tropsch synthesis, methanol and dimethyl ether production, water-gas shift technology and natural gas hydrate conversion. The final section examines environmental degradation issues in fuel processing plants as well as automation, advanced process control and process modelling techniques for plant optimisation Written by an international team of expert contributors, Advances in clean hydrocarbon fuel processing provides a valuable reference for fuel processing engineers, industrial petrochemists and energy professionals, as well as for researchers and academics in this field. A comprehensive reference on the range of alternative conversion processes and technologies Provides an overview of the feedstocks, environmental issues and life cycle assessments for alternative hydrocarbon fuel processing, including a review of the key issues in solid, liquid and gaseous fuel conversion Examines automation, advanced process control and process modelling techniques for plant optimisation

Membranes for Clean and Renewable Power Applications

Author: A Gugliuzza
Publisher: Woodhead Publishing
ISBN: 0857098659
Format: PDF, Docs
Download Now
The development and deployment of membrane technologies continues to advance thanks to innovative materials and novel engineering approaches. Membranes for clean and renewable power applications introduces the principles and concepts of membrane technology and explores the use of this technology in clean energy applications. Chapters in part one introduce the utilization of membrane technology in the production of clean and renewable power and the combining of membrane processes with renewable energy technologies. Part two focusses on membranes for biofuel production and processing including membranes and membrane reactors for the production of biodiesel and second generation biofuels. Part three discusses membranes for syngas, hydrogen and oxygen production and processing. Chapters highlight steam reforming of biofuels for the production of hydrogen-rich gas A., perovskite membrane reactors, and environmental analysis of hydrogen-methane blends for transportation. Chapters in part four explore membranes for fuel cells including ceramic membranes for intermediate temperature solid oxide fuel cells (SOFC), microbial fuel cells, and direct bioethanol fuel cells. Finally, part five discusses membranes integrated with solar, wind energy and water-related applications including membrane technologies for solar-hydrogen production, solar-desalination plants, and the storage as methane of energy generated by wind power and other renewable sources. A final chapter introduces wastewater processing, energy conservation and energy generation. Membranes for clean and renewable power applications is a comprehensive resource for professionals and consultants in the clean and renewable energy industry, membrane and materials scientists and professionals, and academics and researchers in the field. Introduces the principles and concepts of membrane technology and explores the use of this technology in clean energy applications