Advances in the Mechanics of Plates and Shells

Author: D. Durban
Publisher: Springer Science & Business Media
ISBN: 0306469545
Format: PDF, ePub, Mobi
Download Now
The optimal control of flexible structures is an active area of research. The main body of work in this area is concerned with the control of time-dependent displacements and stresses, and assumes linear elastic conditions, namely linear elastic material behavior and small defor- tion. See, e. g. , [1]–[3], the collections of papers [4, 5], and references therein. On the other hand, in the present paper we consider the static optimal control of a structure made of a nonlinear elastic material and und- going large deformation. An important application is the suppression of static or quasi-static elastic deformation in flexible space structures such as parts of satellites by the use of control loads [6]. Solar rad- tion and radiation from other sources induce a temperature field in the structure, which in turn generates an elastic displacement field. The displacements must usually satisfy certain limitations dictated by the allowed working conditions of various orientation-sensitive instruments and antennas in the space vehicle. For example, a parabolic reflector may cease to be effective when undergoing large deflection. The elastic deformation can be reduced by use of control loads, which may be imp- mented via mechanically-based actuators or more modern piezoelectric devices. When the structure under consideration is made of a rubb- like material and is undergoing large deformation, nonlinear material and geometric effects must be taken into account in the analysis.

IUTAM Symposium on Mechanics of Martensitic Phase Transformation in Solids

Author: Qing-Ping Sun
Publisher: Springer Science & Business Media
ISBN: 9401700699
Format: PDF, ePub, Mobi
Download Now
Phase transition phenomena in solids are of vital interest to physicists, materials scientists, and engineers who need to understand and model the mechanical behavior of solids during various kinds of phase transformations. This volume is a collection of 29 written contributions by distinguished invited speakers from 14 countries to the IUTAM Symposium on Mechanics of Martensitic Phase Transformation in Solids, the first IUTAM Symposium focusing on this topic. It contains basic theoretical and experimental aspects of the recent advances in the mechanics research of martensitic phase transformations. The main topics include microstructure and interfaces, material instability and its propagation, micromechanics approaches, interaction between plasticity and phase transformation, phase transformation in thin films, single and polycrystalline shape memory alloys, shape memory polymers, TRIP steels, etc. Due to the multidisciplinary nature of the research covered, this volume will be of interest to researchers, graduate students and engineers in the field of theoretical and applied mechanics as well as materials science and technology.

Functional Analysis

Author: Leonid P. Lebedev
Publisher: Springer Science & Business Media
ISBN: 0306483971
Format: PDF
Download Now
This book started its life as a series of lectures given by the second author from the 1970’s onwards to students in their third and fourth years in the Department of Mechanics and Mathematics at Rostov State University. For these lectures there was also an audience of engineers and applied mechanicists who wished to understand the functional analysis used in contemporary research in their fields. These people were not so much interested in functional analysis itself as in its applications; they did not want to be told about functional analysis in its most abstract form, but wanted a guided tour through those parts of the analysis needed for their applications. The lecture notes evolved over the years as the first author started to make more formal typewritten versions incorporating new material. About 1990 the first author prepared an English version and submitted it to Kluwer Academic Publishers for inclusion in the series Solid Mechanics and its Applications. At that state the notes were divided into three long chapters covering linear and nonlinear analysis. As Series Editor, the third author started to edit them. The requirements of lecture notes and books are vastly different. A book has to be complete (in some sense), self contained, and able to be read without the help of an instructor.

A Brief on Tensor Analysis

Author: James G. Simmonds
Publisher: Springer Science & Business Media
ISBN: 1441985220
Format: PDF, Docs
Download Now
In this text which gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics, the mathematics of tensor analysis is introduced in four, well-separated stages, and the physical interpretation and application of vectors and tensors are stressed throughout. This new edition contains more exercises. In addition, the author has appended a section on Differential Geometry.

Elasto Plastic and Damage Analysis of Plates and Shells

Author: George Z. Voyiadjis
Publisher: Springer Science & Business Media
ISBN: 3540793518
Format: PDF, Docs
Download Now
Shells and plates are critical structures in numerous engineering applications. Analysis and design of these structures is of continuing interest to the scienti c and engineering communities. Accurate and conservative assessments of the maximum load carried by a structure, as well as the equilibrium path in both the elastic and inelastic range, are of paramount importance to the engineer. The elastic behavior of shells has been closely investigated, mostly by means of the nite element method. Inelastic analysis however, especially accounting for damage effects, has received much less attention from researchers. In this book, we present a computational model for nite element, elasto-plastic, and damage analysis of thin and thick shells. Formulation of the model proceeds in several stages. First, we develop a theory for thick spherical shells, providing a set of shell constitutive equations. These equations incorporate the effects of transverse shear deformation, initial curvature, and radial stresses. The proposed shell equations are conveniently used in nite element analysis. 0 AsimpleC quadrilateral, doubly curved shell element is developed. By means of a quasi-conforming technique, shear and membrane locking are prevented. The element stiffness matrix is given explicitly, making the formulation computationally ef cient. We represent the elasto-plastic behavior of thick shells and plates by means of the non-layered model, using an Updated Lagrangian method to describe a small-strain geometric non-linearity. For the treatment of material non-linearities, we adopt an Iliushin’s yield function expressed in terms of stress resultants, with isotropic and kinematic hardening rules.

Theory of Shell Structures

Author: C. R. Calladine
Publisher: Cambridge University Press
ISBN: 9780521369459
Format: PDF, ePub, Mobi
Download Now
This book attempts to bring the essence of shell structures within the grasp of engineers. It tackles the fundamental question of how bending and stretching effects combine and interact in shell structures from a physical point of view; and shows that this approach leads to an understanding of the structural mechanics of shells in general.

Understanding DNA

Author: Chris R. Calladine
Publisher: Elsevier
ISBN: 9780080474663
Format: PDF, ePub, Docs
Download Now
The functional properties of any molecule are directly related to, and affected by, its structure. This is especially true for DNA, the molecular that carries the code for all life on earth. The third edition of Understanding DNA has been entirely revised and updated, and expanded to cover new advances in our understanding. It explains, step by step, how DNA forms specific structures, the nature of these structures and how they fundamentally affect the biological processes of transcription and replication. Written in a clear, concise and lively fashion, Understanding DNA is essential reading for all molecular biology, biochemistry and genetics students, to newcomers to the field from other areas such as chemistry or physics, and even for seasoned researchers, who really want to understand DNA. Describes the basic units of DNA and how these form the double helix, and the various types of DNA double helix Outlines the methods used to study DNA structure Contains over 130 illustrations, some in full color, as well as exercises and further readings to stimulate student comprehension

A Heat Transfer Textbook

Author: John H Lienhard
Publisher: Courier Corporation
ISBN: 0486318370
Format: PDF, Docs
Download Now
This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' insight into related phenomena. Three introductory chapters form a minicourse in heat transfer, covering all of the subjects discussed in detail in subsequent chapters. This unique and effective feature introduces heat exchangers early in the development, rather than at the end. The authors also present a novel and simplified method for dimensional analysis, and they capitalize on the similarity of natural convection and film condensation to develop these two topics in a parallel manner. Worked examples and end-of-chapter exercises appear throughout the book, along with well-drawn, illuminating figures.