Affine Maps Euclidean Motions and Quadrics

Author: Agustí Reventós Tarrida
Publisher: Springer Science & Business Media
ISBN: 9780857297105
Format: PDF, Docs
Download Now
Affine geometry and quadrics are fascinating subjects alone, but they are also important applications of linear algebra. They give a first glimpse into the world of algebraic geometry yet they are equally relevant to a wide range of disciplines such as engineering. This text discusses and classifies affinities and Euclidean motions culminating in classification results for quadrics. A high level of detail and generality is a key feature unmatched by other books available. Such intricacy makes this a particularly accessible teaching resource as it requires no extra time in deconstructing the author’s reasoning. The provision of a large number of exercises with hints will help students to develop their problem solving skills and will also be a useful resource for lecturers when setting work for independent study. Affinities, Euclidean Motions and Quadrics takes rudimentary, and often taken-for-granted, knowledge and presents it in a new, comprehensive form. Standard and non-standard examples are demonstrated throughout and an appendix provides the reader with a summary of advanced linear algebra facts for quick reference to the text. All factors combined, this is a self-contained book ideal for self-study that is not only foundational but unique in its approach.’ This text will be of use to lecturers in linear algebra and its applications to geometry as well as advanced undergraduate and beginning graduate students.

Complex Analysis and Differential Equations

Author: Luis Barreira
Publisher: Springer Science & Business Media
ISBN: 1447140087
Format: PDF, Docs
Download Now
This text provides an accessible, self-contained and rigorous introduction to complex analysis and differential equations. Topics covered include holomorphic functions, Fourier series, ordinary and partial differential equations. The text is divided into two parts: part one focuses on complex analysis and part two on differential equations. Each part can be read independently, so in essence this text offers two books in one. In the second part of the book, some emphasis is given to the application of complex analysis to differential equations. Half of the book consists of approximately 200 worked out problems, carefully prepared for each part of theory, plus 200 exercises of variable levels of difficulty. Tailored to any course giving the first introduction to complex analysis or differential equations, this text assumes only a basic knowledge of linear algebra and differential and integral calculus. Moreover, the large number of examples, worked out problems and exercises makes this the ideal book for independent study.

An Introduction to Laplace Transforms and Fourier Series

Author: Phil Dyke
Publisher: Springer Science & Business Media
ISBN: 1447163958
Format: PDF, ePub, Mobi
Download Now
In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. An Introduction to Laplace Transforms and Fourier Series will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and biological modelling requiring techniques for solving initial value problems.

Modeling of Curves and Surfaces with MATLAB

Author: Vladimir Rovenski
Publisher: Springer Science & Business Media
ISBN: 0387712771
Format: PDF, ePub
Download Now
This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.

From Real to Complex Analysis

Author: R. H. Dyer
Publisher: Springer
ISBN: 3319062093
Format: PDF, ePub, Mobi
Download Now
The purpose of this book is to provide an integrated course in real and complex analysis for those who have already taken a preliminary course in real analysis. It particularly emphasises the interplay between analysis and topology. Beginning with the theory of the Riemann integral (and its improper extension) on the real line, the fundamentals of metric spaces are then developed, with special attention being paid to connectedness, simple connectedness and various forms of homotopy. The final chapter develops the theory of complex analysis, in which emphasis is placed on the argument, the winding number, and a general (homology) version of Cauchy's theorem which is proved using the approach due to Dixon. Special features are the inclusion of proofs of Montel's theorem, the Riemann mapping theorem and the Jordan curve theorem that arise naturally from the earlier development. Extensive exercises are included in each of the chapters, detailed solutions of the majority of which are given at the end. From Real to Complex Analysis is aimed at senior undergraduates and beginning graduate students in mathematics. It offers a sound grounding in analysis; in particular, it gives a solid base in complex analysis from which progress to more advanced topics may be made.

Geometry

Author: Michele Audin
Publisher: Springer Science & Business Media
ISBN: 3642561276
Format: PDF
Download Now
Geometry, this very ancient field of study of mathematics, frequently remains too little familiar to students. Michle Audin, professor at the University of Strasbourg, has written a book allowing them to remedy this situation and, starting from linear algebra, extend their knowledge of affine, Euclidean and projective geometry, conic sections and quadrics, curves and surfaces. It includes many nice theorems like the nine-point circle, Feuerbach's theorem, and so on. Everything is presented clearly and rigourously. Each property is proved, examples and exercises illustrate the course content perfectly. Precise hints for most of the exercises are provided at the end of the book. This very comprehensive text is addressed to students at upper undergraduate and Master's level to discover geometry and deepen their knowledge and understanding.

Linear Algebra and Geometry

Author: Igor R. Shafarevich
Publisher: Springer Science & Business Media
ISBN: 3642309941
Format: PDF, ePub, Mobi
Download Now
This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.

Computer Vision

Author: Richard Szeliski
Publisher: Springer
ISBN: 9781848829343
Format: PDF
Download Now
Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

Undergraduate Algebraic Geometry

Author: Miles Reid
Publisher: Cambridge University Press
ISBN: 9780521356626
Format: PDF, ePub
Download Now
This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time.

Introduction to Classical Geometries

Author: Ana Irene Ramírez Galarza
Publisher: Springer Science & Business Media
ISBN: 9783764375188
Format: PDF, ePub, Mobi
Download Now
This book develops the geometric intuition of the reader by examining the symmetries (or rigid motions) of the space in question. This approach introduces in turn all the classical geometries: Euclidean, affine, elliptic, projective and hyperbolic. The main focus is on the mathematically rich two-dimensional case, although some aspects of 3- or $n$-dimensional geometries are included. Basic notions of algebra and analysis are used to convey better understanding of various concepts and results. Concepts of geometry are presented in a very simple way, so that they become easily accessible: the only pre-requisites are calculus, linear algebra and basic analytic geometry.