Recurrent Neural Networks for Prediction

Author: Danilo P. Mandic
Publisher: John Wiley & Sons Incorporated
ISBN: 9780471495178
Format: PDF
Download Now
New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters. ? Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio-temporal architectures together with the concepts of modularity and nesting ? Examines stability and relaxation within RNNs ? Presents on-line learning algorithms for nonlinear adaptive filters and introduces new paradigms which exploit the concepts of a priori and a posteriori errors, data-reusing adaptation, and normalisation ? Studies convergence and stability of on-line learning algorithms based upon optimisation techniques such as contraction mapping and fixed point iteration ? Describes strategies for the exploitation of inherent relationships between parameters in RNNs ? Discusses practical issues such as predictability and nonlinearity detecting and includes several practical applications in areas such as air pollutant modelling and prediction, attractor discovery and chaos, ECG signal processing, and speech processing Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications. VISIT OUR COMMUNICATIONS TECHNOLOGY WEBSITE! http://www.wiley.co.uk/commstech/ VISIT OUR WEB PAGE! http://www.wiley.co.uk/

An Introduction to Neural Networks

Author: Kevin Gurney
Publisher: CRC Press
ISBN: 1482286998
Format: PDF, ePub, Mobi
Download Now
Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.

Constructive Neural Networks

Author: Leonardo Franco
Publisher: Springer Science & Business Media
ISBN: 3642045111
Format: PDF, Kindle
Download Now
This book presents a collection of invited works that consider constructive methods for neural networks, taken primarily from papers presented at a special th session held during the 18 International Conference on Artificial Neural Networks (ICANN 2008) in September 2008 in Prague, Czech Republic. The book is devoted to constructive neural networks and other incremental learning algorithms that constitute an alternative to the standard method of finding a correct neural architecture by trial-and-error. These algorithms provide an incremental way of building neural networks with reduced topologies for classification problems. Furthermore, these techniques produce not only the multilayer topologies but the value of the connecting synaptic weights that are determined automatically by the constructing algorithm, avoiding the risk of becoming trapped in local minima as might occur when using gradient descent algorithms such as the popular back-propagation. In most cases the convergence of the constructing algorithms is guaranteed by the method used. Constructive methods for building neural networks can potentially create more compact and robust models which are easily implemented in hardware and used for embedded systems. Thus a growing amount of current research in neural networks is oriented towards this important topic. The purpose of this book is to gather together some of the leading investigators and research groups in this growing area, and to provide an overview of the most recent advances in the techniques being developed for constructive neural networks and their applications.

Fundamentals of Neural Networks

Author: Laurene V. Fausett
Publisher: Prentice Hall
ISBN: 9780133341867
Format: PDF, ePub, Docs
Download Now
Providing detailed examples of simple applications, this new book introduces the use of neural networks. It covers simple neural nets for pattern classification; pattern association; neural networks based on competition; adaptive-resonance theory; and more. For professionals working with neural networks.

Fundamentals of Artificial Neural Networks

Author: Mohamad H. Hassoun
Publisher: MIT Press
ISBN: 9780262082396
Format: PDF, ePub
Download Now
Fundamentals of Building Energy Dynamics assesses how and why buildings use energy, and how energy use and peak demand can be reduced. It provides a basis for integrating energy efficiency and solar approaches in ways that will allow building owners and designers to balance the need to minimize initial costs, operating costs, and life-cycle costs with need to maintain reliable building operations and enhance environmental quality both inside and outside the building. Chapters trace the development of building energy systems and analyze the demand side of solar applications as a means for determining what portion of a building's energy requirements can potentially be met by solar energy.Following the introduction, the book provides an overview of energy use patterns in the aggregate U.S. building population. Chapter 3 surveys work on the energy flows in an individual building and shows how these flows interact to influence overall energy use. Chapter 4 presents the analytical methods, techniques, and tools developed to calculate and analyze energy use in buildings, while chapter 5 provides an extensive survey of the energy conservation and management strategies developed in the post-energy crisis period.The approach taken is a commonsensical one, starting with the proposition that the purpose of buildings is to house human activities, and that conservation measures that negatively affect such activities are based on false economies. The goal is to determine rational strategies for the design of new buildings, and the retrofit of existing buildings to bring them up to modern standards of energy use. The energy flows examined are both large scale (heating systems) and small scale (choices among appliances).Solar Heat Technologies: Fundamentals and Applications, Volume 4

Artificial Neural Networks

Author: Ivan Nunes da Silva
Publisher: Springer
ISBN: 3319431625
Format: PDF, Kindle
Download Now
This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.

Modular Neural Networks and Type 2 Fuzzy Systems for Pattern Recognition

Author: Patricia Melin
Publisher: Springer
ISBN: 3642241395
Format: PDF, ePub, Mobi
Download Now
This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural networks with the aim of designing intelligent systems for complex pattern recognition problems, including iris, ear, face and voice recognition. The third part contains chapters with the theme of evolutionary optimization of type-2 fuzzy systems and modular neural networks in the area of intelligent pattern recognition, which includes the application of genetic algorithms for obtaining optimal type-2 fuzzy integration systems and ideal neural network architectures for solving problems in this area.

Learning Deep Architectures for AI

Author: Yoshua Bengio
Publisher: Now Publishers Inc
ISBN: 1601982941
Format: PDF, Mobi
Download Now
Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.

Computational Intelligence

Author: Leszek Rutkowski
Publisher: Springer Science & Business Media
ISBN: 3540762876
Format: PDF, ePub, Mobi
Download Now
This quite simply superb book focuses on various techniques of computational intelligence, both single ones and those which form hybrid methods. These techniques are today commonly applied to issues of artificial intelligence. The book presents methods of knowledge representation using different techniques, namely the rough sets, type-1 fuzzy sets and type-2 fuzzy sets. Next up, various neural network architectures are presented and their learning algorithms are derived. Then, the family of evolutionary algorithms is discussed, including connections between these techniques and neural networks and fuzzy systems. Finally, various methods of data partitioning and algorithms of automatic data clustering are given and new neuro-fuzzy architectures are studied and compared.