Amorphous Nanophotonics

Author: Carsten Rockstuhl
Publisher: Springer Science & Business Media
ISBN: 3642324754
Format: PDF, Docs
Download Now
This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic from many directions.

Nanooptics Nanophotonics Nanostructures and Their Applications

Author: Olena Fesenko
Publisher: Springer
ISBN: 3319910833
Format: PDF, Docs
Download Now
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features selected peer-reviewed contributions from participants in the 5th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2017) held in Chernivtsi, Ukraine on August 23-26, 2017. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics and nanoplasmonics to interface studies. This book's companion volume also addresses topics such as energy storage and biomedical applications.

Nanophotonics Integrating Photochemistry Optics and Nano Bio Materials Studies

Author: Hiroshi Masuhara
Publisher: Elsevier
ISBN: 9780080473536
Format: PDF, ePub, Docs
Download Now
Nanophotonics: Integrating Photochemistry, Optics and Nano/Bio Materials Studies. Is an interdisciplinary research text on the application of nanophotonic (physical/chemical) research and effects in devices for applications, bridging a gap between conventional pthotophysics/photochemistry and nanoscience. Nanophotonics is a new wide research field related to photochemistry, photobiology, and photophysics in nanodimension. Under the keywords of "Photo" and "Nano", advanced scientific topics, such as spectroscopic analysis of from single molecules to nanomaterials, nanofabrication by photons, detection of single bio-molecules, near field optics, and so forth, are described here. The book is written by experts in the field of photochemistry, optics, material science, bioscience, and so on for providing advanced knowledge of nanophotonics. Nanophotonics is a new research field that is not included in any conventional discipline but widely cover evolving and promising research subjects under the keywords of "Light" and "Nanoscale". Topics included in the book are concerned with photodynamics: from single molecules to nanoparticles, spectroscopy and imaging in nanodimensions, nanofabrication, synthesis, analysis and control of nano/bio systems and so on, the book is finalized by topics of toward molecular nanophotonics. This is written primarily for graduate students, researchers, and engineers.

Quantum Nano Photonics

Author: Baldassare Di Bartolo
Publisher: Springer
ISBN: 9402415440
Format: PDF, Kindle
Download Now
This book brings together more closely researchers working in the two fields of quantum optics and nano-optics and provides a general overview of the main topics of interest in applied and fundamental research. The contributions cover, for example, single-photon emitters and emitters of entangled photon pairs based on epitaxially grown semiconductor quantum dots, nitrogen vacancy centers in diamond as single-photon emitters, coupled quantum bits based on trapped ions, integrated waveguide superconducting nanowire single-photon detectors, quantum nano-plasmonics, nanosensing, quantum aspects of biophotonics and quantum metamaterials. The articles span the bridge from pedagogical introductions on the fundamental principles to the current state-of-the-art, and are authored by pioneers and leaders in the field. Numerical simulations are presented as a powerful tool to gain insight into the physical behavior of nanophotonic systems and provide a critical complement to experimental investigations and design of devices.

Handbook of Nano Optics and Nanophotonics

Author: Motoichi Ohtsu
Publisher: Springer
ISBN: 9783642310652
Format: PDF
Download Now
In the 1990s, optical technology and photonics industry developed fast, but further progress became difficult due to a fundamental limit of light known as the diffraction limit. This limit could be overcome using the novel technology of nano-optics or nanophotonics in which the size of the electromagnetic field is decreased down to the nanoscale and is used as a carrier for signal transmission, processing, and fabrication. Such a decrease beyond the diffraction limit is possible by using optical near-fields. The true nature of nano-optics and nanophotonics involves not only their abilities to meet the above requirements but also their abilities to realize qualitative innovations in photonic devices, fabrication techniques, energy conversion and information processing systems. The objective of this work is to review the innovations of optical science and technology by nano-optics and nanophotonics. While in conventional optical science and technology, light and matter are discussed separately, in nano-optics and nanophotonics, light and matter have to be regarded as being coupled to each other, and the energy flow between nanoparticles is bidirectional. This means that nano-optics and nanophotonics have to be regarded as a technology fusing optical fields and matter. This unique work reviews and covers the most recent topics of nano-optics, applications to device operations, fabrication techniques, energy conversion, information processing, architectures and algorithms. Each chapter is written by the leading scientists in the relevant field. Thus, this work will provide high-quality scientific and technical information to scientists, engineers, and graduate students who are and will be engaged in R&D of nano-optics and nanophotonics. Especially, the topics to be covered by this work will be popularly used by the engineers in the rapidly growing market of the optical energy conversion.

Fundamentals and Applications of Nanophotonics

Author: Joseph W. Haus
Publisher: Woodhead Publishing
ISBN: 1782424873
Format: PDF, ePub, Docs
Download Now
Fundamentals and Applications of Nanophotonics includes a comprehensive discussion of the field of nanophotonics, including key enabling technologies that have the potential to drive economic growth and impact numerous application domains such as ICT, the environment, healthcare, military, transport, manufacturing, and energy. This book gives readers the theoretical underpinnings needed to understand the latest advances in the field. After an introduction to the area, chapters two and three cover the essential topics of electrodynamics, quantum mechanics, and computation as they relate to nanophotonics. Subsequent chapters explore materials for nanophotonics, including nanoparticles, photonic crystals, nanosilicon, nanocarbon, III-V, and II-VI semiconductors. In addition, fabrication and characterization techniques are addressed, along with the importance of plasmonics, and the applications of nanophotonics in devices such as lasers, LEDs, and photodetectors. Covers electrodynamics, quantum mechanics and computation as these relate to nanophotonics Reviews materials, fabrication and characterization techniques for nanophotonics Describes applications of the technology such as lasers, LEDs and photodetectors

Artificial Materials

Author: Olivier Vanbésien
Publisher: John Wiley & Sons
ISBN: 1118563328
Format: PDF, ePub, Docs
Download Now
This book addresses artificial materials including photonic crystals (PC) and metamaterials (MM). The first part is devoted to design concepts: negative permeability and permittivity for negative refraction, periodic structures, transformation optics. The second part concerns PC and MM in stop band regime: from cavities, guides to high impedance surfaces. Abnormal refraction, less than one and negative, in PC and MM are studied in a third part, addressing super-focusing and cloaking. Applications for telecommunications, lasers and imaging systems are also explored.

Nanophotonics

Author: Arthur McGurn
Publisher: Springer
ISBN: 3319770721
Format: PDF, ePub
Download Now
This book gives a readable introduction to the important, rapidly developing, field of nanophotonics. It provides a quick understanding of the basic elements of the field, allowing students and newcomers to progress rapidly to the frontiers of their interests. Topics include: The basic mathematical techniques needed for the study of the materials of nanophotonic technology; photonic crystals and their applications as laser resonators, waveguides, and circuits of waveguides; the application of photonic crystals technology in the design of optical diodes and transistors; the basic properties needed for the design and understanding of new types of engineered materials known as metamaterials; and a consideration of how and why these engineered materials have been formulated in the lab, as well as their applications as negative refractive index materials, as perfect lens, as cloaking devices, and their effects on Cherenkov and other types of radiation. Additionally, the book introduces the new field of plasmonics and reviews its important features. The role of plasmon-polaritons in the scattering and transmission of light by rough surfaces and the enhanced transmission of light by plasmon-polariton supporting surfaces is addressed. The important problems of subwavelength resolution are treated with discussions of applications in a number of scientific fields. The basic principles of near-field optical microscopy are presented with a number of important applications. The basics of atomic cavity physics, photonic entanglement and its relation to some of the basic properties of quantum computing, and the physics associated with the study of optical lattices are presented.

Introduction to Nanophotonics

Author: Sergey V. Gaponenko
Publisher: Cambridge University Press
ISBN: 1139643568
Format: PDF, ePub
Download Now
Nanophotonics is where photonics merges with nanoscience and nanotechnology, and where spatial confinement considerably modifies light propagation and light-matter interaction. Describing the basic phenomena, principles, experimental advances and potential impact of nanophotonics, this graduate-level textbook is ideal for students in physics, optical and electronic engineering and materials science. The textbook highlights practical issues, material properties and device feasibility, and includes the basic optical properties of metals, semiconductors and dielectrics. Mathematics is kept to a minimum and theoretical issues are reduced to a conceptual level. Each chapter ends in problems so readers can monitor their understanding of the material presented. The introductory quantum theory of solids and size effects in semiconductors are considered to give a parallel discussion of wave optics and wave mechanics of nanostructures. The physical and historical interplay of wave optics and quantum mechanics is traced. Nanoplasmonics, an essential part of modern photonics, is also included.

Multiscale Modeling in Nanophotonics

Author: Alexander Bagaturyants
Publisher: CRC Press
ISBN: 1351614053
Format: PDF, Kindle
Download Now
The idea of theoretically predicting the useful properties of various materials using multiscale simulations has become popular in recent years. Of special interest are nanostructured, organic functional materials, which have a hierarchical structure and are considered materials of the future because of their flexibility and versatility. Their functional properties are inherited from the molecule that lies at the heart of the hierarchical structure. On the other hand, the properties of this functional molecule, in particular its absorption and emission spectra, strongly depend on its interactions with its molecular environment. Therefore, the multiscale simulations used to predict the properties of organic functional materials should be atomistic, that is, they should be based on classical and/or quantum methods that explicitly take into account the molecular structure and intermolecular interactions at the atomic level. This book, written by well-known specialists in theoretical chemistry, focuses on the basics of classical mechanics, quantum chemistry methods used for molecular disordered materials, classical methods of molecular simulations of disordered materials, vibronic interactions, and applications (presented as multiscale strategies for atomistic simulations of photonic materials). It has been edited by Professor Mikhail Alfimov, a renowned Russian scientist, a full member of the Russian Academy of Sciences, Russia, and the founder, first director, and now research supervisor of the Photochemistry Center of the Russian Academy of Science, Russia. Professor Alfimov’s main research interests are in the field of photochemistry and photophysics of molecular and supramolecular systems. The book is a great reference for advanced undergraduate- and graduate-level students of nanotechnology and molecular science and researchers in nano- and molecular science, nanotechnology, chemistry, and physical chemistry, especially those with an interest in functional materials.