Bioinformatics Algorithms

Author: Phillip Compeau
ISBN: 9780990374602
Format: PDF, Mobi
Download Now
Bioinformatics Algorithms: an Active Learning Approach is one of the first textbooks to emerge from the recent Massive Open Online Course (MOOC) revolution. A light-hearted and analogy-filled companion to the authors' acclaimed MOOC on Coursera, this book presents students with a dynamic approach to learning bioinformatics. It strikes a unique balance between practical challenges in modern biology and fundamental algorithmic ideas, thus capturing the interest of students of both biology and computer science. Each chapter begins with a central biological question, such as "Are There Fragile Regions in the Human Genome?" or "Which DNA Patterns Play the Role of Molecular Clocks?" and then steadily develops the algorithmic sophistication required to answer this question. Hundreds of exercises are incorporated directly into the text as soon as they are needed; readers can test their knowledge through automated coding challenges on the Rosalind Bioinformatics Textbook Track. A website augments the textbook by providing additional educational materials, including video lectures and PowerPoint slides.--Book website.

Algorithms in Bioinformatics

Author: Wing-Kin Sung
Publisher: CRC Press
ISBN: 9781420070347
Format: PDF, Mobi
Download Now
Thoroughly Describes Biological Applications, Computational Problems, and Various Algorithmic Solutions Developed from the author’s own teaching material, Algorithms in Bioinformatics: A Practical Introduction provides an in-depth introduction to the algorithmic techniques applied in bioinformatics. For each topic, the author clearly details the biological motivation and precisely defines the corresponding computational problems. He also includes detailed examples to illustrate each algorithm and end-of-chapter exercises for students to familiarize themselves with the topics. Supplementary material is available at This classroom-tested textbook begins with basic molecular biology concepts. It then describes ways to measure sequence similarity, presents simple applications of the suffix tree, and discusses the problem of searching sequence databases. After introducing methods for aligning multiple biological sequences and genomes, the text explores applications of the phylogenetic tree, methods for comparing phylogenetic trees, the problem of genome rearrangement, and the problem of motif finding. It also covers methods for predicting the secondary structure of RNA and for reconstructing the peptide sequence using mass spectrometry. The final chapter examines the computational problem related to population genetics.

Computational molecular biology

Author: Peter Clote
Publisher: Wiley
ISBN: 9780471872511
Format: PDF, ePub, Docs
Download Now
Molecular biology. Math primer. Sequence alignment. All about eve. Hidden markov models. Structure prediction. A mathematical background. Resources.

Bioinformatics for Biologists

Author: Pavel Pevzner
Publisher: Cambridge University Press
ISBN: 1139501615
Format: PDF
Download Now
The computational education of biologists is changing to prepare students for facing the complex datasets of today's life science research. In this concise textbook, the authors' fresh pedagogical approaches lead biology students from first principles towards computational thinking. A team of renowned bioinformaticians take innovative routes to introduce computational ideas in the context of real biological problems. Intuitive explanations promote deep understanding, using little mathematical formalism. Self-contained chapters show how computational procedures are developed and applied to central topics in bioinformatics and genomics, such as the genetic basis of disease, genome evolution or the tree of life concept. Using bioinformatic resources requires a basic understanding of what bioinformatics is and what it can do. Rather than just presenting tools, the authors - each a leading scientist - engage the students' problem-solving skills, preparing them to meet the computational challenges of their life science careers.

Introduction to Computational Molecular Biology

Author: João Carlos Setubal
Publisher: Pws Publishing Company
ISBN: 9780534952624
Format: PDF, Kindle
Download Now
Basic concepts of molecular biology. Strings, graphs, and algorithms. Sequence comparasion and database search. Fragment assembly of DNA. Physical mapping of DNA. Phylogenetic trees. Genome rearrangements. Molecular structure prediction. epilogue: computing with DNA. Answers to selected exercises. References. index.

Introduction to Computational Biology

Author: Bernhard Haubold
Publisher: Springer Science & Business Media
ISBN: 3764373873
Format: PDF, Docs
Download Now
Written with the advanced undergraduate in mind, this book introduces into the field of Bioinformatics. The authors explain the computational and conceptional background to the analysis of large-scale sequence data. Many of the corresponding analysis methods are rooted in evolutionary thinking, which serves as a common thread throughout the book. The focus is on methods of comparative genomics and subjects covered include: alignments, gene finding, phylogeny, and the analysis of single nucleotide polymorphisms (SNPs). The volume contains exercises, questions & answers to selected problems.

Introduction to Computational Biology

Author: Michael S. Waterman
Publisher: CRC Press
ISBN: 1351437089
Format: PDF, ePub
Download Now
Biology is in the midst of a era yielding many significant discoveries and promising many more. Unique to this era is the exponential growth in the size of information-packed databases. Inspired by a pressing need to analyze that data, Introduction to Computational Biology explores a new area of expertise that emerged from this fertile field- the combination of biological and information sciences. This introduction describes the mathematical structure of biological data, especially from sequences and chromosomes. After a brief survey of molecular biology, it studies restriction maps of DNA, rough landmark maps of the underlying sequences, and clones and clone maps. It examines problems associated with reading DNA sequences and comparing sequences to finding common patterns. The author then considers that statistics of pattern counts in sequences, RNA secondary structure, and the inference of evolutionary history of related sequences. Introduction to Computational Biology exposes the reader to the fascinating structure of biological data and explains how to treat related combinatorial and statistical problems. Written to describe mathematical formulation and development, this book helps set the stage for even more, truly interdisciplinary work in biology.