An Introduction to Fourier Analysis

Author: Russell L. Herman
Publisher: CRC Press
ISBN: 1498773710
Format: PDF
Download Now
This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: • Convergence and summation of infinite series • Representation of functions by infinite series • Trigonometric and Generalized Fourier series • Legendre, Bessel, gamma, and delta functions • Complex numbers and functions • Analytic functions and integration in the complex plane • Fourier and Laplace transforms. • The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.

Introduction to Fourier Analysis and Wavelets

Author: Mark A. Pinsky
Publisher: American Mathematical Soc.
ISBN: 082184797X
Format: PDF, ePub, Docs
Download Now
This book provides a concrete introduction to a number of topics in harmonic analysis, accessible at the early graduate level or, in some cases, at an upper undergraduate level. Necessary prerequisites to using the text are rudiments of the Lebesgue measure and integration on the real line. It begins with a thorough treatment of Fourier series on the circle and their applications to approximation theory, probability, and plane geometry (the isoperimetric theorem). Frequently, more than one proof is offered for a given theorem to illustrate the multiplicity of approaches. The second chapter treats the Fourier transform on Euclidean spaces, especially the author's results in the three-dimensional piecewise smooth case, which is distinct from the classical Gibbs-Wilbraham phenomenon of one-dimensional Fourier analysis. The Poisson summation formula treated in Chapter 3 provides an elegant connection between Fourier series on the circle and Fourier transforms on the real line, culminating in Landau's asymptotic formulas for lattice points on a large sphere. Much of modern harmonic analysis is concerned with the behavior of various linear operators on the Lebesgue spaces $L^p(\mathbb{R}^n)$. Chapter 4 gives a gentle introduction to these results, using the Riesz-Thorin theorem and the Marcinkiewicz interpolation formula. One of the long-time users of Fourier analysis is probability theory. In Chapter 5 the central limit theorem, iterated log theorem, and Berry-Esseen theorems are developed using the suitable Fourier-analytic tools. The final chapter furnishes a gentle introduction to wavelet theory, depending only on the $L_2$ theory of the Fourier transform (the Plancherel theorem). The basic notions of scale and location parameters demonstrate the flexibility of the wavelet approach to harmonic analysis. The text contains numerous examples and more than 200 exercises, each located in close proximity to the related theoretical material.

Introduction to Fourier Analysis on Euclidean Spaces PMS 32

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 140088389X
Format: PDF, Kindle
Download Now
The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.

Introduction to Fourier Analysis

Author: Norman Morrison
Publisher: Wiley-Interscience
ISBN: 9780471017370
Format: PDF
Download Now
Comprehensive, user friendly, and pedagoicaly structured ... a fast, easy way to learn, about the electrical engineer's most important mathematical tool Based on a groundbreaking one-semester course originated by Professor Norman Morrison at the University of Cape Town, this book serves equally well as a course text and a self-study guide for professionals. Offering only relevant mathematics, it covers all the core principles of electrical engineering contained in Fourier analysis, including the time and frequency domains; the representation of waveforms in terms of complex exponentials and sinusoids; complex exponentials and sinusoids as the eigenfunctions of linear systems; convolution; impulse response and the frequency transfer function; magnitude and phase spectra; and modulation and demodulation. * Covers Fourier analysis exclusively for electrical engineering students and professionals * Offers a complete FFT system contained on the enclosed disks (one for IBM compatibles, the other for Macintosh) * Includes dozens of examples drawn from electrical engineering * Packed with exercises, samples, and end-of-chapter problem sets

Fourier Analysis

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400831237
Format: PDF, Kindle
Download Now
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Fourier Analysis of Time Series

Author: Peter Bloomfield
Publisher: John Wiley & Sons
ISBN: 0471653993
Format: PDF
Download Now
A new, revised edition of a yet unrivaled work on frequency domain analysis Long recognized for his unique focus on frequency domain methods for the analysis of time series data as well as for his applied, easy-to-understand approach, Peter Bloomfield brings his well-known 1976 work thoroughly up to date. With a minimum of mathematics and an engaging, highly rewarding style, Bloomfield provides in-depth discussions of harmonic regression, harmonic analysis, complex demodulation, and spectrum analysis. All methods are clearly illustrated using examples of specific data sets, while ample exercises acquaint readers with Fourier analysis and its applications. The Second Edition: Devotes an entire chapter to complex demodulation Treats harmonic regression in two separate chapters Features a more succinct discussion of the fast Fourier transform Uses S-PLUS commands (replacing FORTRAN) to accommodate programming needs and graphic flexibility Includes Web addresses for all time series data used in the examples An invaluable reference for statisticians seeking to expand their understanding of frequency domain methods, Fourier Analysis of Time Series, Second Edition also provides easy access to sophisticated statistical tools for scientists and professionals in such areas as atmospheric science, oceanography, climatology, and biology.

Exercises in Fourier Analysis

Author: T. W. Körner
Publisher: Cambridge University Press
ISBN: 9780521438490
Format: PDF, Docs
Download Now
For physicists, engineers and mathematicians, Fourier analysis constitutes a tool of great usefulness. A wide variety of the techniques and applications of the subject were discussed in Dr Körner's highly popular book, Fourier Analysis. Now Dr Körner has compiled a collection of exercises on Fourier analysis that will thoroughly test the understanding of the reader. They are arranged chapter by chapter to correspond with Fourier Analysis, and for all who enjoyed that book, this companion volume will be an essential purchase.

Fourier Analysis

Author: Eric Stade
Publisher: John Wiley & Sons
ISBN: 1118165519
Format: PDF, ePub, Mobi
Download Now
A reader-friendly, systematic introduction to Fourier analysis Rich in both theory and application, Fourier Analysis presents a unique and thorough approach to a key topic in advanced calculus. This pioneering resource tells the full story of Fourier analysis, including its history and its impact on the development of modern mathematical analysis, and also discusses essential concepts and today's applications. Written at a rigorous level, yet in an engaging style that does not dilute the material, Fourier Analysis brings two profound aspects of the discipline to the forefront: the wealth of applications of Fourier analysis in the natural sciences and the enormous impact Fourier analysis has had on the development of mathematics as a whole. Systematic and comprehensive, the book: Presents material using a cause-and-effect approach, illustrating where ideas originated and what necessitated them Includes material on wavelets, Lebesgue integration, L2 spaces, and related concepts Conveys information in a lucid, readable style, inspiring further reading and research on the subject Provides exercises at the end of each section, as well as illustrations and worked examples throughout the text Based upon the principle that theory and practice are fundamentally linked, Fourier Analysis is the ideal text and reference for students in mathematics, engineering, and physics, as well as scientists and technicians in a broad range of disciplines who use Fourier analysis in real-world situations.

Fourier Analysis

Author: Javier Duoandikoetxea Zuazo
Publisher: American Mathematical Soc.
ISBN: 9780821883846
Format: PDF, Docs
Download Now