An Introduction to Generalized Linear Models

Author: Annette J. Dobson
Publisher: CRC Press
ISBN: 1351726218
Format: PDF, Mobi
Download Now
An Introduction to Generalized Linear Models, Fourth Edition provides a cohesive framework for statistical modelling, with an emphasis on numerical and graphical methods. This new edition of a bestseller has been updated with new sections on non-linear associations, strategies for model selection, and a Postface on good statistical practice. Like its predecessor, this edition presents the theoretical background of generalized linear models (GLMs) before focusing on methods for analyzing particular kinds of data. It covers Normal, Poisson, and Binomial distributions; linear regression models; classical estimation and model fitting methods; and frequentist methods of statistical inference. After forming this foundation, the authors explore multiple linear regression, analysis of variance (ANOVA), logistic regression, log-linear models, survival analysis, multilevel modeling, Bayesian models, and Markov chain Monte Carlo (MCMC) methods. Introduces GLMs in a way that enables readers to understand the unifying structure that underpins them Discusses common concepts and principles of advanced GLMs, including nominal and ordinal regression, survival analysis, non-linear associations and longitudinal analysis Connects Bayesian analysis and MCMC methods to fit GLMs Contains numerous examples from business, medicine, engineering, and the social sciences Provides the example code for R, Stata, and WinBUGS to encourage implementation of the methods Offers the data sets and solutions to the exercises online Describes the components of good statistical practice to improve scientific validity and reproducibility of results. Using popular statistical software programs, this concise and accessible text illustrates practical approaches to estimation, model fitting, and model comparisons.

An Introduction to Generalized Linear Models Third Edition

Author: Annette J. Dobson
Publisher: Chapman and Hall/CRC
ISBN: 9781584889502
Format: PDF, Docs
Download Now
Continuing to emphasize numerical and graphical methods, An Introduction to Generalized Linear Models, Third Edition provides a cohesive framework for statistical modeling. This new edition of a bestseller has been updated with Stata, R, and WinBUGS code as well as three new chapters on Bayesian analysis. Like its predecessor, this edition presents the theoretical background of generalized linear models (GLMs) before focusing on methods for analyzing particular kinds of data. It covers normal, Poisson, and binomial distributions; linear regression models; classical estimation and model fitting methods; and frequentist methods of statistical inference. After forming this foundation, the authors explore multiple linear regression, analysis of variance (ANOVA), logistic regression, log-linear models, survival analysis, multilevel modeling, Bayesian models, and Markov chain Monte Carlo (MCMC) methods. Using popular statistical software programs, this concise and accessible text illustrates practical approaches to estimation, model fitting, and model comparisons. It includes examples and exercises with complete data sets for nearly all the models covered.

Introduction to General and Generalized Linear Models

Author: Henrik Madsen
Publisher: CRC Press
ISBN: 1439891141
Format: PDF, Mobi
Download Now
Bridging the gap between theory and practice for modern statistical model building, Introduction to General and Generalized Linear Models presents likelihood-based techniques for statistical modelling using various types of data. Implementations using R are provided throughout the text, although other software packages are also discussed. Numerous examples show how the problems are solved with R. After describing the necessary likelihood theory, the book covers both general and generalized linear models using the same likelihood-based methods. It presents the corresponding/parallel results for the general linear models first, since they are easier to understand and often more well known. The authors then explore random effects and mixed effects in a Gaussian context. They also introduce non-Gaussian hierarchical models that are members of the exponential family of distributions. Each chapter contains examples and guidelines for solving the problems via R. Providing a flexible framework for data analysis and model building, this text focuses on the statistical methods and models that can help predict the expected value of an outcome, dependent, or response variable. It offers a sound introduction to general and generalized linear models using the popular and powerful likelihood techniques. Ancillary materials are available at www.imm.dtu.dk/~hm/GLM

Generalized Linear Mixed Models

Author: Walter W. Stroup
Publisher: CRC Press
ISBN: 1439815135
Format: PDF, ePub, Mobi
Download Now
Generalized Linear Mixed Models: Modern Concepts, Methods and Applications presents an introduction to linear modeling using the generalized linear mixed model (GLMM) as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider. Along with describing common applications of GLMMs, the text introduces the essential theory and main methodology associated with linear models that accommodate random model effects and non-Gaussian data. Unlike traditional linear model textbooks that focus on normally distributed data, this one adopts a generalized mixed model approach throughout: data for linear modeling need not be normally distributed and effects may be fixed or random. With numerous examples using SAS® PROC GLIMMIX, this book is ideal for graduate students in statistics, statistics professionals seeking to update their knowledge, and researchers new to the generalized linear model thought process. It focuses on data-driven processes and provides context for extending traditional linear model thinking to generalized linear mixed modeling. See Professor Stroup discuss the book.

A Primer on Linear Models

Author: John F. Monahan
Publisher: CRC Press
ISBN: 9781420062045
Format: PDF, Kindle
Download Now
A Primer on Linear Models presents a unified, thorough, and rigorous development of the theory behind the statistical methodology of regression and analysis of variance (ANOVA). It seamlessly incorporates these concepts using non-full-rank design matrices and emphasizes the exact, finite sample theory supporting common statistical methods. With coverage steadily progressing in complexity, the text first provides examples of the general linear model, including multiple regression models, one-way ANOVA, mixed-effects models, and time series models. It then introduces the basic algebra and geometry of the linear least squares problem, before delving into estimability and the Gauss–Markov model. After presenting the statistical tools of hypothesis tests and confidence intervals, the author analyzes mixed models, such as two-way mixed ANOVA, and the multivariate linear model. The appendices review linear algebra fundamentals and results as well as Lagrange multipliers. This book enables complete comprehension of the material by taking a general, unifying approach to the theory, fundamentals, and exact results of linear models.

Richly Parameterized Linear Models

Author: James S. Hodges
Publisher: CRC Press
ISBN: 143986683X
Format: PDF, ePub, Docs
Download Now
A First Step toward a Unified Theory of Richly Parameterized Linear Models Using mixed linear models to analyze data often leads to results that are mysterious, inconvenient, or wrong. Further compounding the problem, statisticians lack a cohesive resource to acquire a systematic, theory-based understanding of models with random effects. Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects takes a first step in developing a full theory of richly parameterized models, which would allow statisticians to better understand their analysis results. The author examines what is known and unknown about mixed linear models and identifies research opportunities. The first two parts of the book cover an existing syntax for unifying models with random effects. The text explains how richly parameterized models can be expressed as mixed linear models and analyzed using conventional and Bayesian methods. In the last two parts, the author discusses oddities that can arise when analyzing data using these models. He presents ways to detect problems and, when possible, shows how to mitigate or avoid them. The book adapts ideas from linear model theory and then goes beyond that theory by examining the information in the data about the mixed linear model’s covariance matrices. Each chapter ends with two sets of exercises. Conventional problems encourage readers to practice with the algebraic methods and open questions motivate readers to research further. Supporting materials, including datasets for most of the examples analyzed, are available on the author’s website.

Extending the Linear Model with R

Author: Julian J. Faraway
Publisher: CRC Press
ISBN: 9780203492284
Format: PDF, ePub
Download Now
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those fo

The Analysis of Time Series

Author: Chris Chatfield
Publisher: CRC Press
ISBN: 9780203491683
Format: PDF, Docs
Download Now
Since 1975, The Analysis of Time Series: An Introduction has introduced legions of statistics students and researchers to the theory and practice of time series analysis. With each successive edition, bestselling author Chris Chatfield has honed and refined his presentation, updated the material to reflect advances in the field, and presented interesting new data sets. The sixth edition is no exception. It provides an accessible, comprehensive introduction to the theory and practice of time series analysis. The treatment covers a wide range of topics, including ARIMA probability models, forecasting methods, spectral analysis, linear systems, state-space models, and the Kalman filter. It also addresses nonlinear, multivariate, and long-memory models. The author has carefully updated each chapter, added new discussions, incorporated new datasets, and made those datasets available for download from www.crcpress.com. A free online appendix on time series analysis using R can be accessed at http://people.bath.ac.uk/mascc/TSA.usingR.doc. Highlights of the Sixth Edition: A new section on handling real data New discussion on prediction intervals A completely revised and restructured chapter on more advanced topics, with new material on the aggregation of time series, analyzing time series in finance, and discrete-valued time series A new chapter of examples and practical advice Thorough updates and revisions throughout the text that reflect recent developments and dramatic changes in computing practices over the last few years The analysis of time series can be a difficult topic, but as this book has demonstrated for two-and-a-half decades, it does not have to be daunting. The accessibility, polished presentation, and broad coverage of The Analysis of Time Series make it simply the best introduction to the subject available.

Stochastic Processes

Author: Peter Watts Jones
Publisher: Chapman and Hall/CRC
ISBN:
Format: PDF, Docs
Download Now
This text begins with a review of relevant fundamental probability. It then covers several basic gambling problems, random walks, and Markov chains. The authors go on to develop random processes continuous in time, including Poisson, birth and death processes, and general population models.