An Introduction to Infectious Disease Modelling

Author: Emilia Vynnycky
Publisher: Oxford University Press
ISBN: 0198565763
Format: PDF, Mobi
Download Now
Mathematical models are increasingly being used to examine questions in infectious disease control. Applications include predicting the impact of vaccination strategies against common infections and determining optimal control strategies against HIV and pandemic influenza. This book introduces individuals interested in infectious diseases to this exciting and expanding area. The mathematical level of the book is kept as simple as possible, which makes the book accessible to those who have not studied mathematics to university level. Understanding is further enhanced by models that can be accessed online, which will allow readers to explore the impact of different factors and control strategies, and further adapt and develop the models themselves. The book is based on successful courses developed by the authors at the London School of Hygiene and Tropical Medicine. It will be of interest to epidemiologists, public health researchers, policy makers, veterinary scientists, medical statisticians and infectious disease researchers.

Modeling Infectious Diseases in Humans and Animals

Author: Matt J. Keeling
Publisher: Princeton University Press
ISBN: 1400841038
Format: PDF, ePub, Mobi
Download Now
For epidemiologists, evolutionary biologists, and health-care professionals, real-time and predictive modeling of infectious disease is of growing importance. This book provides a timely and comprehensive introduction to the modeling of infectious diseases in humans and animals, focusing on recent developments as well as more traditional approaches. Matt Keeling and Pejman Rohani move from modeling with simple differential equations to more recent, complex models, where spatial structure, seasonal "forcing," or stochasticity influence the dynamics, and where computer simulation needs to be used to generate theory. In each of the eight chapters, they deal with a specific modeling approach or set of techniques designed to capture a particular biological factor. They illustrate the methodology used with examples from recent research literature on human and infectious disease modeling, showing how such techniques can be used in practice. Diseases considered include BSE, foot-and-mouth, HIV, measles, rubella, smallpox, and West Nile virus, among others. Particular attention is given throughout the book to the development of practical models, useful both as predictive tools and as a means to understand fundamental epidemiological processes. To emphasize this approach, the last chapter is dedicated to modeling and understanding the control of diseases through vaccination, quarantine, or culling. Comprehensive, practical introduction to infectious disease modeling Builds from simple to complex predictive models Models and methodology fully supported by examples drawn from research literature Practical models aid students' understanding of fundamental epidemiological processes For many of the models presented, the authors provide accompanying programs written in Java, C, Fortran, and MATLAB In-depth treatment of role of modeling in understanding disease control

An Introduction to Mathematical Modeling of Infectious Diseases

Author: Michael Y. Li
Publisher: Springer
ISBN: 3319721224
Format: PDF, Kindle
Download Now
This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies. The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis. Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases. Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.

Mathematical Epidemiology of Infectious Diseases

Author: O. Diekmann
Publisher: John Wiley & Sons
ISBN: 9780471492412
Format: PDF, ePub
Download Now
Mathematical Epidemiology of Infectious Diseases Model Building, Analysis and Interpretation O. Diekmann University of Utrecht, The Netherlands J. A. P. Heesterbeek Centre for Biometry Wageningen, The Netherlands The mathematical modelling of epidemics in populations is a vast and important area of study. It is about translating biological assumptions into mathematics, about mathematical analysis aided by interpretation and about obtaining insight into epidemic phenomena when translating mathematical results back into population biology. Model assumptions are formulated in terms of, usually stochastic, behaviour of individuals and then the resulting phenomena, at the population level, are unravelled. Conceptual clarity is attained, assumptions are stated clearly, hidden working hypotheses are attained and mechanistic links between different observables are exposed. Features: * Model construction, analysis and interpretation receive detailed attention * Uniquely covers both deterministic and stochastic viewpoints * Examples of applications given throughout * Extensive coverage of the latest research into the mathematical modelling of epidemics of infectious diseases * Provides a solid foundation of modelling skills The reader will learn to translate, model, analyse and interpret, with the help of the numerous exercises. In literally working through this text, the reader acquires modelling skills that are also valuable outside of epidemiology, certainly within population dynamics, but even beyond that. In addition, the reader receives training in mathematical argumentation. The text is aimed at applied mathematicians with an interest in population biology and epidemiology, at theoretical biologists and epidemiologists. Previous exposure to epidemic concepts is not required, as all background information is given. The book is primarily aimed at self-study and ideally suited for small discussion groups, or for use as a course text.

Infectious Diseases of Humans

Author: Roy M. Anderson
Publisher: Oxford University Press
ISBN: 9780198540403
Format: PDF, Mobi
Download Now
This much-acclaimed book provides an analytic framework for evaluating public health measures aimed at eradicating or controlling communicable diseases.

Mathematical Tools for Understanding Infectious Disease Dynamics

Author: Odo Diekmann
Publisher: Princeton University Press
ISBN: 0691155399
Format: PDF, Kindle
Download Now
Mathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment of the subject to integrate deterministic and stochastic models and methods. Mathematical Tools for Understanding Infectious Disease Dynamics fully explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology. This comprehensive and accessible book also features numerous detailed exercises throughout; full elaborations to all exercises are provided. Covers the latest research in mathematical modeling of infectious disease epidemiology Integrates deterministic and stochastic approaches Teaches skills in model construction, analysis, inference, and interpretation Features numerous exercises and their detailed elaborations Motivated by real-world applications throughout

Modeling and Dynamics of Infectious Diseases

Author: Zhien Ma
Publisher: World Scientific
ISBN: 9814261254
Format: PDF, Mobi
Download Now
This book provides a systematic introduction to the fundamental methods and techniques and the frontiers of ? along with many new ideas and results on ? infectious disease modeling, parameter estimation and transmission dynamics. It provides complementary approaches, from deterministic to statistical to network modeling; and it seeks viewpoints of the same issues from different angles, from mathematical modeling to statistical analysis to computer simulations and finally to concrete applications.

Modeling Infectious Disease Parameters Based on Serological and Social Contact Data

Author: Niel Hens
Publisher: Springer Science & Business Media
ISBN: 1461440726
Format: PDF, ePub, Mobi
Download Now
Mathematical epidemiology of infectious diseases usually involves describing the flow of individuals between mutually exclusive infection states. One of the key parameters describing the transition from the susceptible to the infected class is the hazard of infection, often referred to as the force of infection. The force of infection reflects the degree of contact with potential for transmission between infected and susceptible individuals. The mathematical relation between the force of infection and effective contact patterns is generally assumed to be subjected to the mass action principle, which yields the necessary information to estimate the basic reproduction number, another key parameter in infectious disease epidemiology. It is within this context that the Center for Statistics (CenStat, I-Biostat, Hasselt University) and the Centre for the Evaluation of Vaccination and the Centre for Health Economic Research and Modelling Infectious Diseases (CEV, CHERMID, Vaccine and Infectious Disease Institute, University of Antwerp) have collaborated over the past 15 years. This book demonstrates the past and current research activities of these institutes and can be considered to be a milestone in this collaboration. This book is focused on the application of modern statistical methods and models to estimate infectious disease parameters. We want to provide the readers with software guidance, such as R packages, and with data, as far as they can be made publicly available.

A Historical Introduction to Mathematical Modeling of Infectious Diseases

Author: Ivo M. Foppa
Publisher: Academic Press
ISBN: 0128024992
Format: PDF
Download Now
A Historical Introduction to Mathematical Modeling of Infectious Diseases: Seminal Papers in Epidemiology offers step-by-step help on how to navigate the important historical papers on the subject, beginning in the 18th century. The book carefully, and critically, guides the reader through seminal writings that helped revolutionize the field. With pointed questions, prompts, and analysis, this book helps the non-mathematician develop their own perspective, relying purely on a basic knowledge of algebra, calculus, and statistics. By learning from the important moments in the field, from its conception to the 21st century, it enables readers to mature into competent practitioners of epidemiologic modeling. Presents a refreshing and in-depth look at key historical works of mathematical epidemiology Provides all the basic knowledge of mathematics readers need in order to understand the fundamentals of mathematical modeling of infectious diseases Includes questions, prompts, and answers to help apply historical solutions to modern day problems

An Introduction to Mathematical Epidemiology

Author: Maia Martcheva
Publisher: Springer
ISBN: 9781489976116
Format: PDF, ePub, Docs
Download Now
The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of infectious diseases. It includes model building, fitting to data, local and global analysis techniques. Various types of deterministic dynamical models are considered: ordinary differential equation models, delay-differential equation models, difference equation models, age-structured PDE models and diffusion models. It includes various techniques for the computation of the basic reproduction number as well as approaches to the epidemiological interpretation of the reproduction number. MATLAB code is included to facilitate the data fitting and the simulation with age-structured models.