An Introduction to Statistical Methods and Data Analysis

Author: R. Ott
Publisher: Cengage Learning
ISBN: 0495017582
Format: PDF, Mobi
Download Now
Ott and Longnecker’s AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Sixth Edition, provides a broad overview of statistical methods for advanced undergraduate and graduate students from a variety of disciplines who have little or no prior course work in statistics. The authors teach students to solve problems encountered in research projects, to make decisions based on data in general settings both within and beyond the university setting, and to become critical readers of statistical analyses in research papers and in news reports. The first eleven chapters present material typically covered in an introductory statistics course, as well as case studies and examples that are often encountered in undergraduate capstone courses. The remaining chapters cover regression modeling and design of experiments. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

An Introduction to Statistical Methods and Data Analysis

Author: R. Lyman Ott
Publisher: Cengage Learning
ISBN: 1111779988
Format: PDF, Mobi
Download Now
Ott and Longnecker's AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Sixth Edition, provides a broad overview of statistical methods for advanced undergraduate and graduate students from a variety of disciplines who have little or no prior course work in statistics. The authors teach students to solve problems encountered in research projects, to make decisions based on data in general settings both within and beyond the university setting, and to become critical readers of statistical analyses in research papers and in news reports. The first eleven chapters present material typically covered in an introductory statistics course, as well as case studies and examples that are often encountered in undergraduate capstone courses. The remaining chapters cover regression modeling and design of experiments. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

An R and S Plus Companion to Multivariate Analysis

Author: Brian S. Everitt
Publisher: Springer Science & Business Media
ISBN: 1846281245
Format: PDF, ePub, Mobi
Download Now
Applied statisticians often need to perform analyses of multivariate data; for these they will typically use one of the statistical software packages, S-Plus or R. This book sets out how to use these packages for these analyses in a concise and easy-to-use way, and will save users having to buy two books for the job. The author is well-known for this kind of book, and so buyers will trust that he’s got it right.

Mathematical Statistics and Data Analysis

Author: John A. Rice
Publisher:
ISBN: 9780495118688
Format: PDF, ePub, Mobi
Download Now
This is the first text in a generation to re-examine the purpose of the mathematical statistics course. The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts that are set in abstract settings.

Stochastic Modeling and Mathematical Statistics

Author: Francisco J. Samaniego
Publisher: CRC Press
ISBN: 1466560479
Format: PDF, ePub
Download Now
Provides a Solid Foundation for Statistical Modeling and Inference and Demonstrates Its Breadth of Applicability Stochastic Modeling and Mathematical Statistics: A Text for Statisticians and Quantitative Scientists addresses core issues in post-calculus probability and statistics in a way that is useful for statistics and mathematics majors as well as students in the quantitative sciences. The book’s conversational tone, which provides the mathematical justification behind widely used statistical methods in a reader-friendly manner, and the book’s many examples, tutorials, exercises and problems for solution, together constitute an effective resource that students can read and learn from and instructors can count on as a worthy complement to their lectures. Using classroom-tested approaches that engage students in active learning, the text offers instructors the flexibility to control the mathematical level of their course. It contains the mathematical detail that is expected in a course for "majors" but is written in a way that emphasizes the intuitive content in statistical theory and the way theoretical results are used in practice. More than 1000 exercises and problems at varying levels of difficulty and with a broad range of topical focus give instructors many options in assigning homework and provide students with many problems on which to practice and from which to learn.

Stat Labs

Author: Deborah Nolan
Publisher: Springer Science & Business Media
ISBN: 0387227431
Format: PDF, ePub, Mobi
Download Now
Integrating the theory and practice of statistics through a series of case studies, each lab introduces a problem, provides some scientific background, suggests investigations for the data, and provides a summary of the theory used in each case. Aimed at upper-division students.

Mathematical Statistics and Data Analysis

Author: John A. Rice
Publisher: Cengage Learning
ISBN: 0534399428
Format: PDF, ePub, Mobi
Download Now
This is the first text in a generation to re-examine the purpose of the mathematical statistics course. The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts that are set in abstract settings. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

An Introduction to Statistical Learning

Author: Gareth James
Publisher: Springer Science & Business Media
ISBN: 1461471389
Format: PDF, Docs
Download Now
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Statistical Methods in Water Resources

Author: D.R. Helsel
Publisher: Elsevier
ISBN: 9780080875088
Format: PDF, Mobi
Download Now
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources. The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies. The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.

A First Course in Statistical Methods

Author: Lyman Ott
Publisher: Duxbury Press
ISBN: 9780534408060
Format: PDF
Download Now
A FIRST COURSE IN STATISTICAL METHODS addresses a pressing need in the methods course—a shorter text designed for a one-term course. By selecting and revising material from their best-selling two-semester text, AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Fifth Edition, the authors created an ideal book for a one-term course in statistical methods. Based on the belief that statistics is a thought process tied to the scientific method, the text utilizes a 5-step approach: 1) defining the problem, 2) collecting data, 3) summarizing data, 4) analyzing and interpreting the data, and 5) communicating the results of the analysis.