An Introduction to Stochastic Modeling

Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483220443
Format: PDF, Kindle
Download Now
An Introduction to Stochastic Modeling, Revised Edition provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

An Introduction to Stochastic Modeling

Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483220443
Format: PDF, Docs
Download Now
An Introduction to Stochastic Modeling, Revised Edition provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

An Introduction to Stochastic Modeling

Author: Mark A. Pinsky
Publisher: Academic Press
ISBN: 0123814162
Format: PDF, Docs
Download Now
Serving as the foundation for a one-semester course in stochastic processes for students familiar with elementary probability theory and calculus, Introduction to Stochastic Modeling, Third Edition, bridges the gap between basic probability and an intermediate level course in stochastic processes. The objectives of the text are to introduce students to the standard concepts and methods of stochastic modeling, to illustrate the rich diversity of applications of stochastic processes in the applied sciences, and to provide exercises in the application of simple stochastic analysis to realistic problems. * Realistic applications from a variety of disciplines integrated throughout the text * Plentiful, updated and more rigorous problems, including computer "challenges" * Revised end-of-chapter exercises sets-in all, 250 exercises with answers * New chapter on Brownian motion and related processes * Additional sections on Matingales and Poisson process * Solutions manual available to adopting instructors

An Introduction to Stochastic Modeling

Author: Mark Pinsky
Publisher: Academic Press
ISBN: 0123814170
Format: PDF, ePub, Mobi
Download Now
Serving as the foundation for a one-semester course in stochastic processes for students familiar with elementary probability theory and calculus, Introduction to Stochastic Modeling, 4e, bridges the gap between basic probability and an intermediate level course in stochastic processes. The objectives of the text are to introduce students to the standard concepts and methods of stochastic modeling, to illustrate the rich diversity of applications of stochastic processes in the applied sciences, and to provide exercises in the application of simple stochastic analysis to realistic problems. New to this edition: Realistic applications from a variety of disciplines integrated throughout the text, including more biological applications Plentiful, completely updated problems Completely updated and reorganized end-of-chapter exercise sets, 250 exercises with answers New chapters of stochastic differential equations and Brownian motion and related processes Additional sections on Martingale and Poisson process • Realistic applications from a variety of disciplines integrated throughout the text. • Extensive end of chapter exercises sets, 250 with answers • Chapter 1-9 of the new edition are identical to the previous edition • New! Chapter 10 - Random Evolutions • New! Chapter 11- Characteristic functions and Their Applications

Introduction to Stochastic Models

Author: Marius Iosifescu
Publisher: John Wiley & Sons
ISBN: 1118623525
Format: PDF, Mobi
Download Now
This book provides a pedagogical examination of the way in which stochastic models are encountered in applied sciences and techniques such as physics, engineering, biology and genetics, economics and social sciences. It covers Markov and semi-Markov models, as well as their particular cases: Poisson, renewal processes, branching processes, Ehrenfest models, genetic models, optimal stopping, reliability, reservoir theory, storage models, and queuing systems. Given this comprehensive treatment of the subject, students and researchers in applied sciences, as well as anyone looking for an introduction to stochastic models, will find this title of invaluable use.

Stochastic Modeling

Author: Barry L. Nelson
Publisher: Courier Corporation
ISBN: 0486139948
Format: PDF, Mobi
Download Now
Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.

An Introduction to Differential Equations

Author: Anil G Ladde
Publisher: World Scientific Publishing Company
ISBN: 9814397393
Format: PDF, ePub, Docs
Download Now
Volume 1: Deterministic Modeling, Methods and Analysis For more than half a century, stochastic calculus and stochastic differential equations have played a major role in analyzing the dynamic phenomena in the biological and physical sciences, as well as engineering. The advancement of knowledge in stochastic differential equations is spreading rapidly across the graduate and postgraduate programs in universities around the globe. This will be the first available book that can be used in any undergraduate/graduate stochastic modeling/applied mathematics courses and that can be used by an interdisciplinary researcher with a minimal academic background. An Introduction to Differential Equations: Volume 2 is a stochastic version of Volume 1 (“An Introduction to Differential Equations: Deterministic Modeling, Methods and Analysis”). Both books have a similar design, but naturally, differ by calculi. Again, both volumes use an innovative style in the presentation of the topics, methods and concepts with adequate preparation in deterministic Calculus. Errata Errata (32 KB)

Introduction to Matrix Analytic Methods in Stochastic Modeling

Author: G. Latouche
Publisher: SIAM
ISBN: 9780898719734
Format: PDF, Kindle
Download Now
Matrix analytic methods are popular as modeling tools because they give one the ability to construct and analyze a wide class of queuing models in a unified and algorithmically tractable way. The authors present the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner. In the current literature, a mixed bag of techniques is used-some probabilistic, some from linear algebra, and some from transform methods. Here, many new proofs that emphasize the unity of the matrix analytic approach are included.

Elements of Stochastic Modelling

Author: Konstantin Borovkov
Publisher: World Scientific Publishing Company
ISBN: 9814571180
Format: PDF, ePub, Docs
Download Now
This is the expanded second edition of a successful textbook that provides a broad introduction to important areas of stochastic modelling. The original text was developed from lecture notes for a one-semester course for third-year science and actuarial students at the University of Melbourne. It reviewed the basics of probability theory and then covered the following topics: Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation. The present edition adds new chapters on elements of stochastic calculus and introductory mathematical finance that logically complement the topics chosen for the first edition. This makes the book suitable for a larger variety of university courses presenting the fundamentals of modern stochastic modelling. Instead of rigorous proofs we often give only sketches of the arguments, with indications as to why a particular result holds and also how it is related to other results, and illustrate them by examples. Wherever possible, the book includes references to more specialised texts on respective topics that contain both proofs and more advanced material. Request Inspection Copy