An Introduction to Stochastic Modeling

Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483220443
Format: PDF, Kindle
Download Now
An Introduction to Stochastic Modeling, Revised Edition provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

An Introduction to Stochastic Modeling

Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483220443
Format: PDF, ePub
Download Now
An Introduction to Stochastic Modeling, Revised Edition provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

An Introduction to Stochastic Modeling

Author: Mark A. Pinsky
Publisher: Academic Press
ISBN: 0123814162
Format: PDF
Download Now
Serving as the foundation for a one-semester course in stochastic processes for students familiar with elementary probability theory and calculus, Introduction to Stochastic Modeling, Third Edition, bridges the gap between basic probability and an intermediate level course in stochastic processes. The objectives of the text are to introduce students to the standard concepts and methods of stochastic modeling, to illustrate the rich diversity of applications of stochastic processes in the applied sciences, and to provide exercises in the application of simple stochastic analysis to realistic problems. * Realistic applications from a variety of disciplines integrated throughout the text * Plentiful, updated and more rigorous problems, including computer "challenges" * Revised end-of-chapter exercises sets-in all, 250 exercises with answers * New chapter on Brownian motion and related processes * Additional sections on Matingales and Poisson process * Solutions manual available to adopting instructors

An Introduction to Stochastic Modeling

Author: Mark Pinsky
Publisher: Academic Press
ISBN: 0123814170
Format: PDF
Download Now
Serving as the foundation for a one-semester course in stochastic processes for students familiar with elementary probability theory and calculus, Introduction to Stochastic Modeling, 4e, bridges the gap between basic probability and an intermediate level course in stochastic processes. The objectives of the text are to introduce students to the standard concepts and methods of stochastic modeling, to illustrate the rich diversity of applications of stochastic processes in the applied sciences, and to provide exercises in the application of simple stochastic analysis to realistic problems. New to this edition: Realistic applications from a variety of disciplines integrated throughout the text, including more biological applications Plentiful, completely updated problems Completely updated and reorganized end-of-chapter exercise sets, 250 exercises with answers New chapters of stochastic differential equations and Brownian motion and related processes Additional sections on Martingale and Poisson process • Realistic applications from a variety of disciplines integrated throughout the text. • Extensive end of chapter exercises sets, 250 with answers • Chapter 1-9 of the new edition are identical to the previous edition • New! Chapter 10 - Random Evolutions • New! Chapter 11- Characteristic functions and Their Applications

Stochastic Modeling

Author: Barry L. Nelson
Publisher: Courier Corporation
ISBN: 0486139948
Format: PDF, Docs
Download Now
Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.

Markov Processes for Stochastic Modeling

Author: Oliver Ibe
Publisher: Newnes
ISBN: 0124078397
Format: PDF, ePub, Docs
Download Now
Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. Presents both the theory and applications of the different aspects of Markov processes Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.

Stochastic Modelling for Systems Biology Second Edition

Author: Darren J. Wilkinson
Publisher: CRC Press
ISBN: 1439837724
Format: PDF, Docs
Download Now
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Re-written to reflect this modern perspective, this second edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. Keeping with the spirit of the first edition, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. New in the Second Edition All examples have been updated to Systems Biology Markup Language Level 3 All code relating to simulation, analysis, and inference for stochastic kinetic models has been re-written and re-structured in a more modular way An ancillary website provides links, resources, errata, and up-to-date information on installation and use of the associated R package More background material on the theory of Markov processes and stochastic differential equations, providing more substance for mathematically inclined readers Discussion of some of the more advanced concepts relating to stochastic kinetic models, such as random time change representations, Kolmogorov equations, Fokker-Planck equations and the linear noise approximation Simple modelling of "extrinsic" and "intrinsic" noise An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional mathematical detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.

Elements of Stochastic Modelling

Author: Konstantin Borovkov
Publisher: World Scientific Publishing Company
ISBN: 9814571180
Format: PDF, ePub, Docs
Download Now
This is the expanded second edition of a successful textbook that provides a broad introduction to important areas of stochastic modelling. The original text was developed from lecture notes for a one-semester course for third-year science and actuarial students at the University of Melbourne. It reviewed the basics of probability theory and then covered the following topics: Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation. The present edition adds new chapters on elements of stochastic calculus and introductory mathematical finance that logically complement the topics chosen for the first edition. This makes the book suitable for a larger variety of university courses presenting the fundamentals of modern stochastic modelling. Instead of rigorous proofs we often give only sketches of the arguments, with indications as to why a particular result holds and also how it is related to other results, and illustrate them by examples. Wherever possible, the book includes references to more specialised texts on respective topics that contain both proofs and more advanced material. Request Inspection Copy