An Undergraduate Introduction to Financial Mathematics

Author: J. Robert Buchanan
Publisher: World Scientific
ISBN: 9812835350
Format: PDF, ePub, Docs
Download Now
"This textbook provides an introduction to financial mathematics and financial engineering for undergraduate students who have completed a three or four semester sequence of calculus courses. It introduces the theory of interest, random variables and probability, stochastic processes, arbitrage, option pricing, hedging, and portfolio optimization. The student progresses from knowing only elementary calculus to understanding the derivation and solution of the Black-Scholes partial differential equation and its solutions. This is one of the few books on the subject of financial mathematics which is accessible to undergraduates having only a thorough grounding in elementary calculus. It explains the subject matter without 'hand waving' arguments and includes numerous examples. Every chapter concludes with a set of exercises which test the chapter's concepts and fill in details of derivations." -- Publisher's description.

An Undergraduate Introduction to Financial Mathematics Third Edition

Author: J Robert Buchanan
Publisher: World Scientific Publishing Company
ISBN: 9814407461
Format: PDF, ePub
Download Now
This textbook provides an introduction to financial mathematics and financial engineering for undergraduate students who have completed a three- or four-semester sequence of calculus courses. It introduces the theory of interest, discrete and continuous random variables and probability, stochastic processes, linear programming, the Fundamental Theorem of Finance, option pricing, hedging, and portfolio optimization. This third edition expands on the second by including a new chapter on the extensions of the Black-Scholes model of option pricing and a greater number of exercises at the end of each chapter. More background material and exercises added, with solutions provided to the other chapters, allowing the textbook to better stand alone as an introduction to financial mathematics. The reader progresses from a solid grounding in multivariable calculus through a derivation of the Black-Scholes equation, its solution, properties, and applications. The text attempts to be as self-contained as possible without relying on advanced mathematical and statistical topics. The material presented in this book will adequately prepare the reader for graduate-level study in mathematical finance.

Introduction to Financial Mathematics

Author: Kevin J. Hastings
Publisher: CRC Press
ISBN: 1498723918
Format: PDF, Docs
Download Now
Introduction to Financial Mathematics is ideal for an introductory undergraduate course. Unlike most textbooks aimed at more advanced courses, the text motivates students through a discussion of personal finances and portfolio management. The author then goes on to cover valuation of financial derivatives in discrete time, using all of closed form, recursive, and simulation methods. The text covers nearly all of the syllabus topics of the Financial Mathematics Actuarial examination, providing students with the foundation they require for future studies and throughout their careers. It begins by covering standard material on the mathematics of interest, including compound interest, present value, annuities, loans, several versions of the rate of return on an investment, and interest in continuous time. The text explains how to value bonds at their issue dates, at coupon times, between coupon times, and in cases where the bonds are terminated early. Next, it supplies a rapid-fire overview of the main ideas and techniques of discrete probability, including sample spaces and probability measures, random variables and distributions, expectation, conditional probability, and independence. The author introduces the basic terminology of stocks and stock trading. He also explains how to derive the rate of return on a portfolio and how to use the idea of risk aversion to model the investor tradeoff between risk and return. The text also discusses the estimation of parameters of asset models from real data. The text closes with a detailed discussion of how to value financial derivatives using anti-arbitrage assumptions. The one-step and multi-step cases are covered, and exotic options such as barrier options are also introduced, to which simulation methods are applied. Many of the examples in the book involve numerical solution of complicated non-linear equations; others ask students to produce algorithms which beg to be implemented as programs. For maximum flexibility, the author has produced the text without adhering to any particular computational platform. A digital version of this text is also available in the form of Mathematica notebooks that contain additional content.

Mathematik und Technologie

Author: Christiane Rousseau
Publisher: Springer-Verlag
ISBN: 3642300928
Format: PDF, Mobi
Download Now
Zusammen mit der Abstraktion ist die Mathematik das entscheidende Werkzeug für technologische Innovationen. Das Buch bietet eine Einführung in zahlreiche Anwendungen der Mathematik auf dem Gebiet der Technologie. Meist werden moderne Anwendungen dargestellt, die heute zum Alltag gehören. Die mathematischen Grundlagen für technologische Anwendungen sind dabei relativ elementar, was die Leistungsstärke der mathematischen Modellbildung und der mathematischen Hilfsmittel beweist. Mit zahlreichen originellen Übungen am Ende eines jeden Kapitels.

Mathematics for Finance

Author: Marek Capinski
Publisher: Springer
ISBN: 1852338466
Format: PDF, Docs
Download Now
This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.

Mathematics for Finance

Author: Marek Capiński
Publisher: Springer
ISBN: 9781852333300
Format: PDF, Mobi
Download Now
Designed to form the basis of an undergraduate course in mathematical finance, this book builds on mathematical models of bond and stock prices and covers three major areas of mathematical finance that all have an enormous impact on the way modern financial markets operate, namely: Black-Scholesâ arbitrage pricing of options and other derivative securities; Markowitz portfolio optimization theory and the Capital Asset Pricing Model; and interest rates and their term structure. Assuming only a basic knowledge of probability and calculus, it covers the material in a mathematically rigorous and complete way at a level accessible to second or third year undergraduate students. The text is interspersed with a multitude of worked examples and exercises, so it is ideal for self-study and suitable not only for students of mathematics, but also students of business management, finance and economics, and anyone with an interest in finance who needs to understand the underlying theory.

Option Valuation

Author: Hugo D. Junghenn
Publisher: CRC Press
ISBN: 1439889112
Format: PDF
Download Now
Option Valuation: A First Course in Financial Mathematics provides a straightforward introduction to the mathematics and models used in the valuation of financial derivatives. It examines the principles of option pricing in detail via standard binomial and stochastic calculus models. Developing the requisite mathematical background as needed, the text presents an introduction to probability theory and stochastic calculus suitable for undergraduate students in mathematics, economics, and finance. The first nine chapters of the book describe option valuation techniques in discrete time, focusing on the binomial model. The author shows how the binomial model offers a practical method for pricing options using relatively elementary mathematical tools. The binomial model also enables a clear, concrete exposition of fundamental principles of finance, such as arbitrage and hedging, without the distraction of complex mathematical constructs. The remaining chapters illustrate the theory in continuous time, with an emphasis on the more mathematically sophisticated Black-Scholes-Merton model. Largely self-contained, this classroom-tested text offers a sound introduction to applied probability through a mathematical finance perspective. Numerous examples and exercises help students gain expertise with financial calculus methods and increase their general mathematical sophistication. The exercises range from routine applications to spreadsheet projects to the pricing of a variety of complex financial instruments. Hints and solutions to odd-numbered problems are given in an appendix and a full solutions manual is available for qualifying instructors.

Elementary Calculus of Financial Mathematics

Author: A. J. Roberts
Publisher: SIAM
ISBN: 9780898718225
Format: PDF, ePub
Download Now
Financial mathematics and its calculus introduced in an accessible manner for undergraduate students. Topics covered include financial indices as stochastic processes, Ito's stochastic calculus, the Fokker-Planck Equation and extra MATLAB/SCILAB code.

Mathematical Modeling

Author: Stefan Heinz
Publisher: Springer Science & Business Media
ISBN: 9783642203114
Format: PDF, ePub
Download Now
The whole picture of Mathematical Modeling is systematically and thoroughly explained in this text for undergraduate and graduate students of mathematics, engineering, economics, finance, biology, chemistry, and physics. This textbook gives an overview of the spectrum of modeling techniques, deterministic and stochastic methods, and first-principle and empirical solutions. Complete range: The text continuously covers the complete range of basic modeling techniques: it provides a consistent transition from simple algebraic analysis methods to simulation methods used for research. Such an overview of the spectrum of modeling techniques is very helpful for the understanding of how a research problem considered can be appropriately addressed. Complete methods: Real-world processes always involve uncertainty, and the consideration of randomness is often relevant. Many students know deterministic methods, but they do hardly have access to stochastic methods, which are described in advanced textbooks on probability theory. The book develops consistently both deterministic and stochastic methods. In particular, it shows how deterministic methods are generalized by stochastic methods. Complete solutions: A variety of empirical approximations is often available for the modeling of processes. The question of which assumption is valid under certain conditions is clearly relevant. The book provides a bridge between empirical modeling and first-principle methods: it explains how the principles of modeling can be used to explain the validity of empirical assumptions. The basic features of micro-scale and macro-scale modeling are discussed – which is an important problem of current research.

Introduction to the Mathematics of Finance

Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 1441990054
Format: PDF, Mobi
Download Now
An elementary introduction to probability and mathematical finance including a chapter on the Capital Asset Pricing Model (CAPM), a topic that is very popular among practitioners and economists. Dr. Roman has authored 32 books, including a number of books on mathematics, such as Coding and Information Theory, Advanced Linear Algebra, and Field Theory, published by Springer-Verlag.