Analysis of Genetic Association Studies

Author: Gang Zheng
Publisher: Springer Science & Business Media
ISBN: 1461422442
Format: PDF, Kindle
Download Now
Analysis of Genetic Association Studies is both a graduate level textbook in statistical genetics and genetic epidemiology, and a reference book for the analysis of genetic association studies. Students, researchers, and professionals will find the topics introduced in Analysis of Genetic Association Studies particularly relevant. The book is applicable to the study of statistics, biostatistics, genetics and genetic epidemiology. In addition to providing derivations, the book uses real examples and simulations to illustrate step-by-step applications. Introductory chapters on probability and genetic epidemiology terminology provide the reader with necessary background knowledge. The organization of this work allows for both casual reference and close study.

The Fundamentals of Modern Statistical Genetics

Author: Nan M. Laird
Publisher: Springer Science & Business Media
ISBN: 9781441973382
Format: PDF
Download Now
This book covers the statistical models and methods that are used to understand human genetics, following the historical and recent developments of human genetics. Starting with Mendel’s first experiments to genome-wide association studies, the book describes how genetic information can be incorporated into statistical models to discover disease genes. All commonly used approaches in statistical genetics (e.g. aggregation analysis, segregation, linkage analysis, etc), are used, but the focus of the book is modern approaches to association analysis. Numerous examples illustrate key points throughout the text, both of Mendelian and complex genetic disorders. The intended audience is statisticians, biostatisticians, epidemiologists and quantitatively- oriented geneticists and health scientists wanting to learn about statistical methods for genetic analysis, whether to better analyze genetic data, or to pursue research in methodology. A background in intermediate level statistical methods is required. The authors include few mathematical derivations, and the exercises provide problems for students with a broad range of skill levels. No background in genetics is assumed.

Applied Statistical Genetics with R

Author: Andrea S. Foulkes
Publisher: Springer Science & Business Media
ISBN: 038789554X
Format: PDF, ePub, Docs
Download Now
Statistical genetics has become a core course in many graduate programs in public health and medicine. This book presents fundamental concepts and principles in this emerging field at a level that is accessible to students and researchers with a first course in biostatistics. Extensive examples are provided using publicly available data and the open source, statistical computing environment, R.

Mathematical and Statistical Methods for Genetic Analysis

Author: Kenneth Lange
Publisher: Springer Science & Business Media
ISBN: 0387217509
Format: PDF, ePub, Mobi
Download Now
Written to equip students in the mathematical siences to understand and model the epidemiological and experimental data encountered in genetics research. This second edition expands the original edition by over 100 pages and includes new material. Sprinkled throughout the chapters are many new problems.

Analysis of Complex Disease Association Studies

Author: Eleftheria Zeggini
Publisher: Academic Press
ISBN: 9780123751430
Format: PDF, ePub, Mobi
Download Now
According to the National Institute of Health, a genome-wide association study is defined as any study of genetic variation across the entire human genome that is designed to identify genetic associations with observable traits (such as blood pressure or weight), or the presence or absence of a disease or condition. Whole genome information, when combined with clinical and other phenotype data, offers the potential for increased understanding of basic biological processes affecting human health, improvement in the prediction of disease and patient care, and ultimately the realization of the promise of personalized medicine. In addition, rapid advances in understanding the patterns of human genetic variation and maturing high-throughput, cost-effective methods for genotyping are providing powerful research tools for identifying genetic variants that contribute to health and disease. This burgeoning science merges the principles of statistics and genetics studies to make sense of the vast amounts of information available with the mapping of genomes. In order to make the most of the information available, statistical tools must be tailored and translated for the analytical issues which are original to large-scale association studies. Analysis of Complex Disease Association Studies will provide researchers with advanced biological knowledge who are entering the field of genome-wide association studies with the groundwork to apply statistical analysis tools appropriately and effectively. With the use of consistent examples throughout the work, chapters will provide readers with best practice for getting started (design), analyzing, and interpreting data according to their research interests. Frequently used tests will be highlighted and a critical analysis of the advantages and disadvantage complimented by case studies for each will provide readers with the information they need to make the right choice for their research. Additional tools including links to analysis tools, tutorials, and references will be available electronically to ensure the latest information is available. Easy access to key information including advantages and disadvantage of tests for particular applications, identification of databases, languages and their capabilities, data management risks, frequently used tests Extensive list of references including links to tutorial websites Case studies and Tips and Tricks

Design Analysis and Interpretation of Genome Wide Association Scans

Author: Daniel O. Stram
Publisher: Springer Science & Business Media
ISBN: 1461494435
Format: PDF, Kindle
Download Now
This book presents the statistical aspects of designing, analyzing and interpreting the results of genome-wide association scans (GWAS studies) for genetic causes of disease using unrelated subjects. Particular detail is given to the practical aspects of employing the bioinformatics and data handling methods necessary to prepare data for statistical analysis. The goal in writing this book is to give statisticians, epidemiologists, and students in these fields the tools to design a powerful genome-wide study based on current technology. The other part of this is showing readers how to conduct analysis of the created study. Design and Analysis of Genome-Wide Association Studies provides a compendium of well-established statistical methods based upon single SNP associations. It also provides an introduction to more advanced statistical methods and issues. Knowing that technology, for instance large scale SNP arrays, is quickly changing, this text has significant lessons for future use with sequencing data. Emphasis on statistical concepts that apply to the problem of finding disease associations irrespective of the technology ensures its future applications. The author includes current bioinformatics tools while outlining the tools that will be required for use with extensive databases from future large scale sequencing projects. The author includes current bioinformatics tools while outlining additional issues and needs arising from the extensive databases from future large scale sequencing projects.

Statistical Genetics

Author: Benjamin Neale
Publisher: Garland Science
ISBN: 1134129335
Format: PDF, ePub
Download Now
Statistical Genetics is an advanced textbook focusing on conducting genome-wide linkage and association analysis in order to identify the genes responsible for complex behaviors and diseases. Starting with an introductory section on statistics and quantitative genetics, it covers both established and new methodologies, providing the genetic and statistical theory on which they are based. Each chapter is written by leading researchers, who give the reader the benefit of their experience with worked examples, study design, and sources of error. The text can be used in conjunction with an associated website (www.genemapping.org) that provides supplementary material and links to downloadable software.

Handbook of Statistical Genetics

Author: David J. Balding
Publisher: John Wiley & Sons
ISBN: 9780470997628
Format: PDF
Download Now
The Handbook for Statistical Genetics is widely regarded as the reference work in the field. However, the field has developed considerably over the past three years. In particular the modeling of genetic networks has advanced considerably via the evolution of microarray analysis. As a consequence the 3rd edition of the handbook contains a much expanded section on Network Modeling, including 5 new chapters covering metabolic networks, graphical modeling and inference and simulation of pedigrees and genealogies. Other chapters new to the 3rd edition include Human Population Genetics, Genome-wide Association Studies, Family-based Association Studies, Pharmacogenetics, Epigenetics, Ethic and Insurance. As with the second Edition, the Handbook includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between the chapters, tying the different areas together. With heavy use of up-to-date examples, real-life case studies and references to web-based resources, this continues to be must-have reference in a vital area of research. Edited by the leading international authorities in the field. David Balding - Department of Epidemiology & Public Health, Imperial College An advisor for our Probability & Statistics series, Professor Balding is also a previous Wiley author, having written Weight-of-Evidence for Forensic DNA Profiles, as well as having edited the two previous editions of HSG. With over 20 years teaching experience, he’s also had dozens of articles published in numerous international journals. Martin Bishop – Head of the Bioinformatics Division at the HGMP Resource Centre As well as the first two editions of HSG, Dr Bishop has edited a number of introductory books on the application of informatics to molecular biology and genetics. He is the Associate Editor of the journal Bioinformatics and Managing Editor of Briefings in Bioinformatics. Chris Cannings – Division of Genomic Medicine, University of Sheffield With over 40 years teaching in the area, Professor Cannings has published over 100 papers and is on the editorial board of many related journals. Co-editor of the two previous editions of HSG, he also authored a book on this topic.

Statistics in Human Genetics

Author: Pak Sham
Publisher: Oxford University Press
ISBN: 9780340662410
Format: PDF, ePub, Mobi
Download Now
In human genetic research sophisticated statistical methods are increasingly being used to analyse results. Until now there has been no book to introduce and explain these methods. The methods are based on both biology and statistics and are likely to contribute to major scientific and medical advances in the next century. Topics include the estimation of allele frequencies, the testing for Hardy-Weinberg equilibrium, classical and complex segregation analysis, linkage analysis for Mendelian and complex diseases and quantitative traits, the detection of allelic associations, the estimation of heritability for multifactorial traits and path analysis. An understanding of elementary statistical concepts is assumed, but the objectives, principles and limitations of the methods are discussed in detail.

Genetic Association Studies Background Conduct Analysis Interpretation

Author: Mehmet Tevfik Dorak
Publisher: Garland Science
ISBN: 1351806432
Format: PDF, ePub
Download Now
Genetic Association Studies is designed for students of public health, epidemiology, and the health sciecnes, covering the main principles of molecular genetics, population genetics, medical genetics, epidemiology and statistics. It presents a balanced view of genetic associations with coverage of candidate gene studies as well as genome-wide association studies. All aspects of a genetic association study are included, from the lab to analysis and interpretation of results, but also bioinformatics approaches to causality assessment. The role of the environment in genetic disease is also highlighted. Genetic Association Studies will enable readers to understand and critique genetic association studies and set them on the way to designing, executing, analyzing, interpreting, and reporting their own.