Analytical Solution Methods for Boundary Value Problems

Author: A.S. Yakimov
Publisher: Academic Press
ISBN: 0128043636
Format: PDF
Download Now
Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies Features extensive revisions from the Russian original, with 115+ new pages of new textual content

Analytical Solution Methods for Boundary Value Problems

Author: A. S. Yakimov
Publisher: Academic Press
ISBN: 9780128042892
Format: PDF, Mobi
Download Now
Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies Features extensive revisions from the Russian original, with 115+ new pages of new textual content

Numerical Solutions of Boundary Value Problems with Finite Difference Method

Author: Sujaul Chowdhury
Publisher: Iop Concise Physics
ISBN: 9781643272818
Format: PDF
Download Now
This book contains an extensive illustration of use of finite difference method in solving the boundary value problem numerically. A wide class of differential equations has been numerically solved in this book. Starting with differential equations of elementary functions like hyperbolic, sine and cosine, we have solved those of special functions like Hermite, Laguerre and Legendre. Those of Airy function, of stationary localised wavepacket, of the quantum mechanical problem of a particle in a 1D box, and the polar equation of motion under gravitational interaction have also been solved. Mathematica 6.0 has been used to solve the system of linear equations that we encountered and to plot the numerical data. Comparison with known analytic solutions showed nearly perfect agreement in every case. On reading this book, readers will become adept in using the method.

Numerical analytic Methods in the Theory of Boundary value Problems

Author: Nikola? Iosifovich Ronto
Publisher: World Scientific
ISBN: 9789810236762
Format: PDF
Download Now
This book contains the main results of the authors' investigations on the development and application of numerical-analytic methods for ordinary nonlinear boundary value problems (BVPs). The methods under consideration provide an opportunity to solve the two important problems of the BVP theory ? namely, to establish existence theorems and to build approximation solutions. They can be used to investigate a wide variety of BVPs.The Appendix, written in collaboration with S I Trofimchuk, discusses the connection of the new method with the classical Cesari, Cesari-Hale and Lyapunov-Schmidt methods.

Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations

Author: A.K. Aziz
Publisher: Academic Press
ISBN: 1483267997
Format: PDF, ePub, Mobi
Download Now
Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations covers the proceedings of the 1974 Symposium by the same title, held at the University of Maryland, Baltimore Country Campus. This symposium aims to bring together a number of numerical analysis involved in research in both theoretical and practical aspects of this field. This text is organized into three parts encompassing 15 chapters. Part I reviews the initial and boundary value problems. Part II explores a large number of important results of both theoretical and practical nature of the field, including discussions of the smooth and local interpolant with small K-th derivative, the occurrence and solution of boundary value reaction systems, the posteriori error estimates, and boundary problem solvers for first order systems based on deferred corrections. Part III highlights the practical applications of the boundary value problems, specifically a high-order finite-difference method for the solution of two-point boundary-value problems on a uniform mesh. This book will prove useful to mathematicians, engineers, and physicists.

Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions

Author: v Mityushev
Publisher: CRC Press
ISBN: 9781584880578
Format: PDF, Mobi
Download Now
Constructive methods developed in the framework of analytic functions effectively extend the use of mathematical constructions, both within different branches of mathematics and to other disciplines. This monograph presents some constructive methods-based primarily on original techniques-for boundary value problems, both linear and nonlinear. From among the many applications to which these methods can apply, the authors focus on interesting problems associated with composite materials with a finite number of inclusions. How far can one go in the solutions of problems in nonlinear mechanics and physics using the ideas of analytic functions? What is the difference between linear and nonlinear cases from the qualitative point of view? What kinds of additional techniques should one use in investigating nonlinear problems? Constructive Methods for Linear and Nonlinear Boundary Value Problems serves to answer these questions, and presents many results to Westerners for the first time. Among the most interesting of these is the complete solution of the Riemann-Hilbert problem for multiply connected domains. The results offered in Constructive Methods for Linear and Nonlinear Boundary Value Problems are prepared for direct application. A historical survey along with background material, and an in-depth presentation of practical methods make this a self-contained volume useful to experts in analytic function theory, to non-specialists, and even to non-mathematicians who can apply the methods to their research in mechanics and physics.

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Author: Uri M. Ascher
Publisher: SIAM
ISBN: 9781611971231
Format: PDF, ePub
Download Now
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Hodge Decomposition A Method for Solving Boundary Value Problems

Author: Günter Schwarz
Publisher: Springer
ISBN: 3540494030
Format: PDF, Kindle
Download Now
Hodge theory is a standard tool in characterizing differ- ential complexes and the topology of manifolds. This book is a study of the Hodge-Kodaira and related decompositions on manifolds with boundary under mainly analytic aspects. It aims at developing a method for solving boundary value problems. Analysing a Dirichlet form on the exterior algebra bundle allows to give a refined version of the classical decomposition results of Morrey. A projection technique leads to existence and regularity theorems for a wide class of boundary value problems for differential forms and vector fields. The book links aspects of the geometry of manifolds with the theory of partial differential equations. It is intended to be comprehensible for graduate students and mathematicians working in either of these fields.