Analytical Solution Methods for Boundary Value Problems

Author: A.S. Yakimov
Publisher: Academic Press
ISBN: 0128043636
Format: PDF
Download Now
Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies Features extensive revisions from the Russian original, with 115+ new pages of new textual content

Numerical Analytic Methods in the Theory of Boundary Value Problems

Author: M Ronto
Publisher: World Scientific
ISBN: 9814495484
Format: PDF, ePub, Docs
Download Now
This book contains the main results of the authors' investigations on the development and application of numerical-analytic methods for ordinary nonlinear boundary value problems (BVPs). The methods under consideration provide an opportunity to solve the two important problems of the BVP theory — namely, to establish existence theorems and to build approximation solutions. They can be used to investigate a wide variety of BVPs. The Appendix, written in collaboration with S I Trofimchuk, discusses the connection of the new method with the classical Cesari, Cesari–Hale and Lyapunov–Schmidt methods. Contents:Numerical-Analytic Method of Successive Approximations for Two-Point Boundary-Value ProblemsModification of the Numerical-Analytic Method for Two-Point Boundary-Value ProblemsNumerical-Analytic Method for Boundary-Value Problems with Parameters in Boundary ConditionsCollocation Method for Boundary-Value Problems with ImpulsesThe Theory of the Numerical-Analytic Method: Achievements and New Trends of Development Readership: Researchers on differential equations. Keywords:Ordinary Differential Equations;Nonlinear Boundary Value Problems;Periodic Boundary Value Problems;Nonlinear Boundary Conditions;Parametrized Boundary Value Problems;Numerical-Analytic Method;Successive Approximations;Determining Equations;Trigonometric Collocation;Impulsive Systems

Electromagnetic Wave Theory for Boundary Value Problems

Author: Hyo J. Eom
Publisher: Springer Science & Business Media
ISBN: 3662069431
Format: PDF, Docs
Download Now
Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.

Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions

Author: v Mityushev
Publisher: CRC Press
ISBN: 9781584880578
Format: PDF, Mobi
Download Now
Constructive methods developed in the framework of analytic functions effectively extend the use of mathematical constructions, both within different branches of mathematics and to other disciplines. This monograph presents some constructive methods-based primarily on original techniques-for boundary value problems, both linear and nonlinear. From among the many applications to which these methods can apply, the authors focus on interesting problems associated with composite materials with a finite number of inclusions. How far can one go in the solutions of problems in nonlinear mechanics and physics using the ideas of analytic functions? What is the difference between linear and nonlinear cases from the qualitative point of view? What kinds of additional techniques should one use in investigating nonlinear problems? Constructive Methods for Linear and Nonlinear Boundary Value Problems serves to answer these questions, and presents many results to Westerners for the first time. Among the most interesting of these is the complete solution of the Riemann-Hilbert problem for multiply connected domains. The results offered in Constructive Methods for Linear and Nonlinear Boundary Value Problems are prepared for direct application. A historical survey along with background material, and an in-depth presentation of practical methods make this a self-contained volume useful to experts in analytic function theory, to non-specialists, and even to non-mathematicians who can apply the methods to their research in mechanics and physics.

Complex Analytic Methods for Partial Differential Equations

Author: Heinrich G. W. Begehr
Publisher: World Scientific
ISBN: 9789810215507
Format: PDF, ePub, Mobi
Download Now
This is an introductory text for beginners who have a basic knowledge of complex analysis, functional analysis and partial differential equations. Riemann and Riemann-Hilbert boundary value problems are discussed for analytic functions, for inhomogeneous Cauchy-Riemann systems as well as for generalized Beltrami systems. Related problems such as the Poincar‚ problem, pseudoparabolic systems and complex elliptic second order equations are also considered. Estimates for solutions to linear equations existence and uniqueness results are thus available for related nonlinear problems; the method is explained by constructing entire solutions to nonlinear Beltrami equations. Often problems are discussed just for the unit disc but more general domains, even of multiply connectivity, are involved.