Analytical Solution Methods for Boundary Value Problems

Author: A.S. Yakimov
Publisher: Academic Press
ISBN: 0128043636
Format: PDF, ePub
Download Now
Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies Features extensive revisions from the Russian original, with 115+ new pages of new textual content

Numerical analytic Methods in the Theory of Boundary value Problems

Author: Nikola? Iosifovich Ronto
Publisher: World Scientific
ISBN: 9789810236762
Format: PDF, Kindle
Download Now
This book contains the main results of the authors' investigations on the development and application of numerical-analytic methods for ordinary nonlinear boundary value problems (BVPs). The methods under consideration provide an opportunity to solve the two important problems of the BVP theory ? namely, to establish existence theorems and to build approximation solutions. They can be used to investigate a wide variety of BVPs.The Appendix, written in collaboration with S I Trofimchuk, discusses the connection of the new method with the classical Cesari, Cesari-Hale and Lyapunov-Schmidt methods.

Electromagnetic Wave Theory for Boundary Value Problems

Author: Hyo Eom
Publisher: Springer Science & Business Media
ISBN: 3662069431
Format: PDF, Mobi
Download Now
Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.

Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions

Author: v Mityushev
Publisher: CRC Press
ISBN: 9781584880578
Format: PDF, Docs
Download Now
Constructive methods developed in the framework of analytic functions effectively extend the use of mathematical constructions, both within different branches of mathematics and to other disciplines. This monograph presents some constructive methods-based primarily on original techniques-for boundary value problems, both linear and nonlinear. From among the many applications to which these methods can apply, the authors focus on interesting problems associated with composite materials with a finite number of inclusions. How far can one go in the solutions of problems in nonlinear mechanics and physics using the ideas of analytic functions? What is the difference between linear and nonlinear cases from the qualitative point of view? What kinds of additional techniques should one use in investigating nonlinear problems? Constructive Methods for Linear and Nonlinear Boundary Value Problems serves to answer these questions, and presents many results to Westerners for the first time. Among the most interesting of these is the complete solution of the Riemann-Hilbert problem for multiply connected domains. The results offered in Constructive Methods for Linear and Nonlinear Boundary Value Problems are prepared for direct application. A historical survey along with background material, and an in-depth presentation of practical methods make this a self-contained volume useful to experts in analytic function theory, to non-specialists, and even to non-mathematicians who can apply the methods to their research in mechanics and physics.

Hodge Decomposition A Method for Solving Boundary Value Problems

Author: Günter Schwarz
Publisher: Springer
ISBN: 3540494030
Format: PDF, ePub, Mobi
Download Now
Hodge theory is a standard tool in characterizing differ- ential complexes and the topology of manifolds. This book is a study of the Hodge-Kodaira and related decompositions on manifolds with boundary under mainly analytic aspects. It aims at developing a method for solving boundary value problems. Analysing a Dirichlet form on the exterior algebra bundle allows to give a refined version of the classical decomposition results of Morrey. A projection technique leads to existence and regularity theorems for a wide class of boundary value problems for differential forms and vector fields. The book links aspects of the geometry of manifolds with the theory of partial differential equations. It is intended to be comprehensible for graduate students and mathematicians working in either of these fields.

Analytical Solutions for Two Ferromagnetic Nanoparticles Immersed in a Magnetic Field

Author: Gehan Anthonys
Publisher: Morgan & Claypool Publishers
ISBN: 1681732815
Format: PDF
Download Now
The investigation of the behavior of ferromagnetic particles in an external magnetic field is important for use in a wide range of applications in magnetostatics problems, from biomedicine to engineering. To the best of the author's knowledge, the systematic analysis for this kind of investigation is not available in the current literature. Therefore, this book contributes a complete solution for investigating the behavior of two ferromagnetic spherical particles, immersed in a uniform magnetic field, by obtaining exact mathematical models on a boundary value problem. While there are a vast number of common numerical and analytical methods for solving boundary value problems in the literature, the rapidly growing complexity of these solutions causes increase usage of the computer tools in practical cases. We analytically solve the boundary value problem by using a special technique called a bispherical coordinates system and the numerical computations were obtained by a computer tool. In addition to these details, we will present step-by-step instructions with simple explanations throughout the book, in an effort to act as inspiration in the reader's own modeling for relevant applications in science and engineering. On the other hand, the resulting analytical expressions will constitute benchmark solutions for specified geometric arrangements, which are beneficial for determining the validity of other relevant numerical techniques. The generated results are analyzed quantitatively as well as qualitatively in various approaches. Moreover, the methodology of this book can be adopted for real-world applications in the fields of ferrohydrodynamics, applied electromagnetics, fluid dynamics, electrical engineering, and so forth. Higher-level university students, academics, engineers, scientists, and researchers involved in the aforementioned fields are the intended audience for this book.

An Introduction to Continuum Mechanics

Author: J. N. Reddy
Publisher: Cambridge University Press
ISBN: 1107292409
Format: PDF, ePub
Download Now
This best-selling textbook presents the concepts of continuum mechanics in a simple yet rigorous manner. It introduces the invariant form as well as the component form of the basic equations and their applications to problems in elasticity, fluid mechanics and heat transfer, and offers a brief introduction to linear viscoelasticity. The book is ideal for advanced undergraduates and graduate students looking to gain a strong background in the basic principles common to all major engineering fields, and for those who will pursue further work in fluid dynamics, elasticity, plates and shells, viscoelasticity, plasticity, and interdisciplinary areas such as geomechanics, biomechanics, mechanobiology and nanoscience. The book features derivations of the basic equations of mechanics in invariant (vector and tensor) form and specification of the governing equations to various co-ordinate systems, and numerous illustrative examples, chapter summaries and exercise problems. This second edition includes additional explanations, examples and problems.