Analytics for Insurance

Author: Tony Boobier
Publisher: John Wiley & Sons
ISBN: 1119141079
Format: PDF, Kindle
Download Now
The business guide to Big Data in insurance, with practical application insight Big Data and Analytics for Insurers is the industry-specific guide to creating operational effectiveness, managing risk, improving financials, and retaining customers. Written from a non-IT perspective, this book focusses less on the architecture and technical details, instead providing practical guidance on translating analytics into target delivery. The discussion examines implementation, interpretation, and application to show you what Big Data can do for your business, with insights and examples targeted specifically to the insurance industry. From fraud analytics in claims management, to customer analytics, to risk analytics in Solvency 2, comprehensive coverage presented in accessible language makes this guide an invaluable resource for any insurance professional. The insurance industry is heavily dependent on data, and the advent of Big Data and analytics represents a major advance with tremendous potential – yet clear, practical advice on the business side of analytics is lacking. This book fills the void with concrete information on using Big Data in the context of day-to-day insurance operations and strategy. Understand what Big Data is and what it can do Delve into Big Data's specific impact on the insurance industry Learn how advanced analytics can revolutionise the industry Bring Big Data out of IT and into strategy, management, marketing, and more Big Data and analytics is changing business – but how? The majority of Big Data guides discuss data collection, database administration, advanced analytics, and the power of Big Data – but what do you actually do with it? Big Data and Analytics for Insurers answers your questions in real, everyday business terms, tailored specifically to the insurance industry's unique needs, challenges, and targets.

Applied Insurance Analytics

Author: Patricia L Saporito
Publisher: FT Press
ISBN: 0133760731
Format: PDF, ePub, Docs
Download Now
Insurers: use analytics to drive far more value from your most important asset -- data! Today, many insurers radically underutilize their data, leaving them vulnerable to traditional and non-traditional competitors alike. Now, drawing on 25 years of industry experience, Patricia Saporito shows how to systematically leverage analytics to improve business performance and customer satisfaction throughout any insurance business. Applied Insurance Analytics demonstrates how to use analytics to systematically improve operations ranging from underwriting and risk management to claims. Even more important: it will help you drive more value everywhere by defining a focused enterprise-wide analytics strategy, and overcoming the challenges that stand in your way. Saporito helps you assess your current analytics maturity, choose the new applications that offer the most value, and master best practices from throughout the industry and beyond. Throughout, she helps you gain more value from data assets, technologies and tools you've already invested in. You'll find new case studies, practical tools, and easy templates for improving the "Analytics IQ" of your entire enterprise. For every insurance industry professional and manager concerned with analytics, including users, IT pros, sales/marketing specialists, and data scientists. This book will also be valuable to students in any MBA or other program focused on insurance or risk management, and to many students in IT or analytics-specific programs.

Fundamental Aspects of Operational Risk and Insurance Analytics

Author: Marcelo G. Cruz
Publisher: John Wiley & Sons
ISBN: 1118573005
Format: PDF, Docs
Download Now
A one-stop guide for the theories, applications, and statistical methodologies essential to operational risk Providing a complete overview of operational risk modeling and relevant insurance analytics, Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk offers a systematic approach that covers the wide range of topics in this area. Written by a team of leading experts in the field, the handbook presents detailed coverage of the theories, applications, and models inherent in any discussion of the fundamentals of operational risk, with a primary focus on Basel II/III regulation, modeling dependence, estimation of risk models, and modeling the data elements. Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk begins with coverage on the four data elements used in operational risk framework as well as processing risk taxonomy. The book then goes further in-depth into the key topics in operational risk measurement and insurance, for example diverse methods to estimate frequency and severity models. Finally, the book ends with sections on specific topics, such as scenario analysis; multifactor modeling; and dependence modeling. A unique companion with Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk, the handbook also features: Discussions on internal loss data and key risk indicators, which are both fundamental for developing a risk-sensitive framework Guidelines for how operational risk can be inserted into a firm’s strategic decisions A model for stress tests of operational risk under the United States Comprehensive Capital Analysis and Review (CCAR) program A valuable reference for financial engineers, quantitative analysts, risk managers, and large-scale consultancy groups advising banks on their internal systems, the handbook is also useful for academics teaching postgraduate courses on the methodology of operational risk.

Analytics for Insurance

Author: Jason Boulanger
Publisher: Createspace Independent Publishing Platform
ISBN: 9781979676144
Format: PDF
Download Now
From fraud analytics in claims management, to customer analytics, to risk analytics in Solvency 2, comprehensive coverage presented in accessible language makes this guide an invaluable resource for any insurance professional. The insurance industry is heavily dependent on data, and the advent of Big Data and analytics represents a major advance with tremendous potential - yet clear, practical advice on the business side of analytics is lacking. This book fills the void with concrete information on using Big Data in the context of day-to-day insurance operations and strategy.

Applied Insurance Analytics

Author: Patricia L Saporito
Publisher: FT Press
ISBN: 0133760731
Format: PDF, Kindle
Download Now
Insurers: use analytics to drive far more value from your most important asset -- data! Today, many insurers radically underutilize their data, leaving them vulnerable to traditional and non-traditional competitors alike. Now, drawing on 25 years of industry experience, Patricia Saporito shows how to systematically leverage analytics to improve business performance and customer satisfaction throughout any insurance business. Applied Insurance Analytics demonstrates how to use analytics to systematically improve operations ranging from underwriting and risk management to claims. Even more important: it will help you drive more value everywhere by defining a focused enterprise-wide analytics strategy, and overcoming the challenges that stand in your way. Saporito helps you assess your current analytics maturity, choose the new applications that offer the most value, and master best practices from throughout the industry and beyond. Throughout, she helps you gain more value from data assets, technologies and tools you've already invested in. You'll find new case studies, practical tools, and easy templates for improving the "Analytics IQ" of your entire enterprise. For every insurance industry professional and manager concerned with analytics, including users, IT pros, sales/marketing specialists, and data scientists. This book will also be valuable to students in any MBA or other program focused on insurance or risk management, and to many students in IT or analytics-specific programs.

Big Data Analytics

Author: P. Krishna Reddy
Publisher: Springer
ISBN: 3319724134
Format: PDF, Kindle
Download Now
This book constitutes the refereed conference proceedings of the 5th International Conference on Big Data Analytics, BDA 2017, held in Hyderabad, India, in December 2017. The 21 revised full papers were carefully reviewed and selected from 80 submissions and cover topics on big data analytics, information and knowledge management, mining of massive datasets, computational modeling, data mining and analysis.

Big Data for Insurance Companies

Author: Marine Corlosquet-Habart
Publisher: John Wiley & Sons
ISBN: 1786300737
Format: PDF, ePub, Docs
Download Now
This book will be a “must” for people who want good knowledge of big data concepts and their applications in the real world, particularly in the field of insurance. It will be useful to people working in finance and to masters students using big data tools. The authors present the bases of big data: data analysis methods, learning processes, application to insurance and position within the insurance market. Individual chapters a will be written by well-known authors in this field.

Health Analytics

Author: Jason Burke
Publisher: John Wiley & Sons
ISBN: 1118733959
Format: PDF
Download Now
A hands-on, analytics road map for health industry leaders The industry-wide transformation taking place across the health and life sciences ecosystem is mandating that organizations adopt new decision-making capabilities, based on science and real-world information. Analytics will be a required competency for the modern health enterprise; this book is about how to "cross the chasm." The ultimate analytics guide for the health industry leader, this essential book equips business leaders with little-to-no experience in analytics to understand how to incorporate analytics as a cornerstone of their 21st century competitive business strategy. Paints the picture for a new health enterprise, one focused on the patient Explores the financial components of this new operating model, using analytics to optimize the tradeoffs between cost and value Deals with the rising role of the consumer, using analytics to create a completely new health engagement model with individual recipients of care Looks at how analytics can drive innovations in care practice, patient-experienced medical outcomes, and analytically driven novel therapies optimized for the individual patient Presents a variety of text, tables, and graphics illustrating the various concepts being described Within each section and chapter, Health Analytics assesses the current landscape, proposing a new model/concept, sharing real-world stories of how the old and new world come together, and framing a "how-to" for the reader in terms of growing that particular set of capabilities in their own enterprises.

Data Mining for Managers

Author: R. Boire
Publisher: Springer
ISBN: 1137406194
Format: PDF
Download Now
Big Data is a growing business trend, but there little advice available on how to use it practically. Written by a data mining expert with over 30 years of experience, this book uses case studies to help marketers, brand managers and IT professionals understand how to capture and measure data for marketing purposes.

Predictive Analytics

Author: Eric Siegel
Publisher: John Wiley & Sons
ISBN: 1119145686
Format: PDF, ePub
Download Now
"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive Analytics unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated — and Hillary for America 2016 plans to calculate — the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.