Application of Structural Equation Modeling in Educational Research and Practice

Author: Myint Swe Khine
Publisher: Springer Science & Business Media
ISBN: 9462093326
Format: PDF, ePub, Docs
Download Now
Structural Equation Modeling (SEM) is a statistical approach to testing hypothesis about the relationships among observed and latent variables. The use of SEM in research has increased in psychology, sociology, and economics in recent years. In particular educational researchers try to obtain the complete image of the process of education through the measurement of personality differences, learning environment, motivation levels and host of other variables that affect the teaching and learning process. With the use of survey instruments and interviews with students, teachers and other stakeholders as a lens, educators can assess and gain valuable information about the social ecology of the classrooms that could help in improving the instructional approach, classroom management and the learning organizations. A considerable number of research have been conducted to identify the factors and interactions between students’ characteristics, personal preferences, affective traits, study skills, and various other factors that could help in better educational performance. In recent years, educational researchers use Structural Equation Modeling (SEM) as a statistical technique to explore the complex and dynamic nature of interactions in educational research and practice. SEM is becoming a powerful analytical tool and making methodological advances in multivariate analysis. This book presents the collective works on concepts, methodologies and applications of SEM in educational research and practice. The anthology of current research described in this book will be a valuable resource for the next generation educational practitioners.

Structural Equation Modeling in Educational Research

Author: Timothy Teo
Publisher: Sense Pub
ISBN: 9789087907884
Format: PDF, ePub, Mobi
Download Now
Over the years, researchers have developed statistical methods to help them investigate and interpret issues of interest in many discipline areas. These methods range from descriptive to inferential to multivariate statistics. As the psychometrics measures in education become more complex, vigorous and robust methods were needed in order to represent research data efficiently. One such method is Structural Equation Modeling (SEM). SEM is a statistical technique that allows the simultaneous analysis of a series of structural equations. It also allows a dependent variable in one equation to become an independent variable in another equation. It is a comprehensive statistical approach to testing hypotheses about relations among observed and latent variables. SEM is commonly known as causal modeling, or path analysis, which hypothesizes causal relationships among variables and tests the causal models with a linear equation system. As educational research questions become more complex, they need to be evaluated with more sophisticated tools. The pervasive use of SEM in the literature has shown that SEM has a potential to be of assistance to modern educational researchers. This book will bring together prominent educators and researchers from around the world to share their contemporary research on structural equation modeling in educational settings. The chapters provide information on recent trends and developments and effective applications of the different models to answer various educational research questions. This book is a critical and specialized source that describes recent advances in SEM in international academia.

A Beginner s Guide to Structural Equation Modeling

Author: Randall E. Schumacker
Publisher: Routledge
ISBN: 1317608097
Format: PDF
Download Now
Noted for its crystal clear explanations, this book is considered the most comprehensive introductory text to structural equation modeling (SEM). Noted for its thorough review of basic concepts and a wide variety of models, this book better prepares readers to apply SEM to a variety of research questions. Programming details and the use of algebra are kept to a minimum to help readers easily grasp the concepts so they can conduct their own analysis and critique related research. Featuring a greater emphasis on statistical power and model validation than other texts, each chapter features key concepts, examples from various disciplines, tables and figures, a summary, and exercises. Highlights of the extensively revised 4th edition include: -Uses different SEM software (not just Lisrel) including Amos, EQS, LISREL, Mplus, and R to demonstrate applications. -Detailed introduction to the statistical methods related to SEM including correlation, regression, and factor analysis to maximize understanding (Chs. 1 – 6). -The 5 step approach to modeling data (specification, identification, estimation, testing, and modification) is now covered in more detail and prior to the modeling chapters to provide a more coherent view of how to create models and interpret results (ch. 7). -More discussion of hypothesis testing, power, sampling, effect sizes, and model fit, critical topics for beginning modelers (ch. 7). - Each model chapter now focuses on one technique to enhance understanding by providing more description, assumptions, and interpretation of results, and an exercise related to analysis and output (Chs. 8 -15). -The use of SPSS AMOS diagrams to describe the theoretical models. -The key features of each of the software packages (Ch. 1). -Guidelines for reporting SEM research (Ch. 16). -www.routledge.com/9781138811935 which provides access to data sets that can be used with any program, links to other SEM examples, related readings, and journal articles, and more. Reorganized, the new edition begins with a more detailed introduction to SEM including the various software packages available, followed by chapters on data entry and editing, and correlation which is critical to understanding how missing data, non-normality, measurement, and restriction of range in scores affects SEM analysis. Multiple regression, path, and factor models are then reviewed and exploratory and confirmatory factor analysis is introduced. These chapters demonstrate how observed variables share variance in defining a latent variables and introduce how measurement error can be removed from observed variables. Chapter 7 details the 5 SEM modeling steps including model specification, identification, estimation, testing, and modification along with a discussion of hypothesis testing and the related issues of power, and sample and effect sizes.Chapters 8 to 15 provide comprehensive introductions to different SEM models including Multiple Group, Second-Order CFA, Dynamic Factor, Multiple-Indicator Multiple-Cause, Mixed Variable and Mixture, Multi-Level, Latent Growth, and SEM Interaction Models. Each of the 5 SEM modeling steps is explained for each model along with an application. Chapter exercises provide practice with and enhance understanding of the analysis of each model. The book concludes with a review of SEM guidelines for reporting research. Designed for introductory graduate courses in structural equation modeling, factor analysis, advanced, multivariate, or applied statistics, quantitative techniques, or statistics II taught in psychology, education, business, and the social and healthcare sciences, this practical book also appeals to researchers in these disciplines. Prerequisites include an introduction to intermediate statistics that covers correlation and regression principles.

Principles and Practice of Structural Equation Modeling Fourth Edition

Author: Rex B. Kline
Publisher: Guilford Publications
ISBN: 1462523005
Format: PDF, ePub
Download Now
Emphasizing concepts and rationale over mathematical minutiae, this is the most widely used, complete, and accessible structural equation modeling (SEM) text. Continuing the tradition of using real data examples from a variety of disciplines, the significantly revised fourth edition incorporates recent developments such as Pearl's graphing theory and the structural causal model (SCM), measurement invariance, and more. Readers gain a comprehensive understanding of all phases of SEM, from data collection and screening to the interpretation and reporting of the results. Learning is enhanced by exercises with answers, rules to remember, and topic boxes. The companion website supplies data, syntax, and output for the book's examples--now including files for Amos, EQS, LISREL, Mplus, Stata, and R (lavaan). New to This Edition *Extensively revised to cover important new topics: Pearl's graphing theory and the SCM, causal inference frameworks, conditional process modeling, path models for longitudinal data, item response theory, and more. *Chapters on best practices in all stages of SEM, measurement invariance in confirmatory factor analysis, and significance testing issues and bootstrapping. *Expanded coverage of psychometrics. *Additional computer tools: online files for all detailed examples, previously provided in EQS, LISREL, and Mplus, are now also given in Amos, Stata, and R (lavaan). *Reorganized to cover the specification, identification, and analysis of observed variable models separately from latent variable models. Pedagogical Features *Exercises with answers, plus end-of-chapter annotated lists of further reading. *Real examples of troublesome data, demonstrating how to handle typical problems in analyses. *Topic boxes on specialized issues, such as causes of nonpositive definite correlations. *Boxed rules to remember. *Website promoting a learn-by-doing approach, including syntax and data files for six widely used SEM computer tools.

Structural Equation Modeling

Author: Gregory R. Hancock
Publisher: IAP
ISBN: 1623962463
Format: PDF, ePub, Docs
Download Now
Sponsored by the American Educational Research Association's Special Interest Group for Educational Statisticians This volume is the second edition of Hancock and Mueller’s highlysuccessful 2006 volume, with all of the original chapters updated as well as four new chapters. The second edition, like the first, is intended to serve as a didacticallyoriented resource for graduate students and research professionals, covering a broad range of advanced topics often not discussed in introductory courses on structural equation modeling (SEM). Such topics are important in furthering the understanding of foundations and assumptions underlying SEM as well as in exploring SEM, as a potential tool to address new types of research questions that might not have arisen during a first course. Chapters focus on the clear explanation and application of topics, rather than on analytical derivations, and contain materials from popular SEM software.

Longitudinal Structural Equation Modeling

Author: Todd D. Little
Publisher: Guilford Press
ISBN: 1462510272
Format: PDF, Kindle
Download Now
Featuring actual datasets as illustrative examples, this book reveals numerous ways to apply structural equation modeling (SEM) to any repeated-measures study. Initial chapters lay the groundwork for modeling a longitudinal change process, from measurement, design, and specification issues to model evaluation and interpretation. Covering both big-picture ideas and technical "how-to-do-it" details, the author deftly walks through when and how to use longitudinal confirmatory factor analysis, longitudinal panel models (including the multiple-group case), multilevel models, growth curve models, and complex factor models, as well as models for mediation and moderation. User-friendly features include equation boxes that clearly explain the elements in every equation, end-of-chapter glossaries, and annotated suggestions for further reading. The companion website (www.guilford.com/little-materials) provides datasets for all of the examples--which include studies of bullying, adolescent students' emotions, and healthy aging--with syntax and output from LISREL, Mplus, and R (lavaan).

Best Practices in Quantitative Methods

Author: Jason W. Osborne
Publisher: SAGE
ISBN: 1412940656
Format: PDF, Mobi
Download Now
The contributors to Best Practices in Quantitative Methods envision quantitative methods in the 21st century, identify the best practices, and, where possible, demonstrate the superiority of their recommendations empirically. Editor Jason W. Osborne designed this book with the goal of providing readers with the most effective, evidence-based, modern quantitative methods and quantitative data analysis across the social and behavioral sciences. The text is divided into five main sections covering select best practices in Measurement, Research Design, Basics of Data Analysis, Quantitative Methods, and Advanced Quantitative Methods. Each chapter contains a current and expansive review of the literature, a case for best practices in terms of method, outcomes, inferences, etc., and broad-ranging examples along with any empirical evidence to show why certain techniques are better. Key Features: Describes important implicit knowledge to readers: The chapters in this volume explain the important details of seemingly mundane aspects of quantitative research, making them accessible to readers and demonstrating why it is important to pay attention to these details. Compares and contrasts analytic techniques: The book examines instances where there are multiple options for doing things, and make recommendations as to what is the "best" choice—or choices, as what is best often depends on the circumstances. Offers new procedures to update and explicate traditional techniques: The featured scholars present and explain new options for data analysis, discussing the advantages and disadvantages of the new procedures in depth, describing how to perform them, and demonstrating their use. Intended Audience: Representing the vanguard of research methods for the 21st century, this book is an invaluable resource for graduate students and researchers who want a comprehensive, authoritative resource for practical and sound advice from leading experts in quantitative methods.

Handbook of Structural Equation Modeling

Author: Rick H. Hoyle
Publisher: Guilford Publications
ISBN: 1462516793
Format: PDF, Kindle
Download Now
The first comprehensive structural equation modeling (SEM) handbook, this accessible volume presents both the mechanics of SEM and specific SEM strategies and applications. The editor, contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, including new and emerging topics in SEM. Each chapter provides conceptually oriented descriptions, fully explicated analyses, and engaging examples that reveal modeling possibilities for use with readers' data. Many of the chapters also include access to data and syntax files at the companion website, allowing readers to try their hands at reproducing the authors' results.

Structural Equation Modeling

Author: David Kaplan
Publisher: SAGE
ISBN: 1412916240
Format: PDF, Mobi
Download Now
Thoroughly revised to address the recent developments that continue to shape the use of structural equation modeling (SEM) in the social and behavioural sciences, the Second Edition of Structural Equation Modeling author has restructured the book into three defined sections: - the foundations of SEM, including path analysis and factor analysis - traditional SEM for continuous latent variables, including assumption issues as well as latent growth curve modeling for continuous growth factors - SEM for categorical latent variables, including latent class analysis, Markov models (latent and mixed latent), and growth mixture modeling. Through the use of detailed, empirical examples, Kaplan demonstrates how SEM can provide a unique lens on the problems social and behavioural scientists face. The book has been enhanced with certain features that will guide the student and researcher through the foundations and critical assumptions of SEM.

Structural Equation Modeling

Author: Rick H. Hoyle
Publisher: SAGE
ISBN: 9780803953185
Format: PDF, ePub, Mobi
Download Now
This largely nontechnical volume reviews some of the major issues facing researchers who wish to use structural equation modeling. Individual chapters present recent developments on specification, estimation and testing, statistical power, software comparisons and analyzing multitrait/multimethod data. Numerous examples of applications are given and attention is paid to the underlying philosophy of structural equation modeling and to writing up results from structural equation modeling analyses.