Applied Finite Element Analysis

Author: G. Ramamurty
Publisher: I. K. International Pvt Ltd
ISBN: 9380578458
Format: PDF, Kindle
Download Now
This book is intended for presenting the basic concepts of Finite Element Analysis applied to several engineering applications. Salient Features: 1. Covers several modules of elasticity, heat conduction, eigenvalue and fluid flow analysis which are necessary for a student of Mechanical Engineering. 2. Finite Element formulations have been presented using both global and natural coordinates. It is important for providing smooth transition form formulation in global coordinates to natural coordinates. 3. Special focus has been given to heat conduction problems and fluid flows which are not sufficiently discussed in other textbooks. 4. Important factors affecting the formulation have been included as Miscellaneous Topics. 5. Several examples have been worked out in order to highlight the applications of Finite Element Analysis. New to this Edition Apart from moderately revising the whole text three new chapters "Dynamic Analysis", "Non-linear Analysis", "Bending of Thin Plates", three appendices and short questions and answers have been added in the present edition to make it more useful.

Applied finite element analysis

Author: Larry J. Segerlind
Publisher: John Wiley & Sons Inc
ISBN:
Format: PDF, ePub, Mobi
Download Now
An introductory textbook for senior/graduate couses in finite element analysis taught in all engineering departments. Covers the basic concepts of the finite element method and their application to the analysis of plane structures and two-dimensional continuum problems in heat transfer, irrotational fluid flow, and elasticity. This revised edition includes a reorganization of topics and an increase in the number of homework problems. The emphasis on numerical illustrations make topis clear without heavy use of sophisticated mathematics.

Hands on Applied Finite Element Analysis

Author: Mehmet Ali Arslan
Publisher:
ISBN: 9780999200599
Format: PDF, Docs
Download Now
The main purpose of this book is to equip, undergraduate/graduate students and professionals, who are craving to start up or enhance their learning with hands-on experience in solving real-life Finite Element Analysis (FEA) problems. This textbook is specially designed for mechanical, aeronautical, mechatronics, biomedical (i.e. orthopedics and dental studies), geotechnics and civil engineering students who are focusing on stress/strain analysis, heat transfer, and vibration characteristics of the problem of their interest. At the same time, this book may also serve the students from different backgrounds, who have a common or special interest in FEA.

The Finite Element Method

Author: G.R. Liu
Publisher: Butterworth-Heinemann
ISBN: 0080994415
Format: PDF, ePub, Docs
Download Now
Written for practicing engineers and students alike, this book emphasizes the role of finite element modeling and simulation in the engineering design process. It provides the necessary theories and techniques of the FEM in a concise and easy-to-understand format and applies the techniques to civil, mechanical, and aerospace problems. Updated throughout for current developments in FEM and FEM software, the book also includes case studies, diagrams, illustrations, and tables to help demonstrate the material. Plentiful diagrams, illustrations and tables demonstrate the material Covers modeling techniques that predict how components will operate and tolerate loads, stresses and strains in reality Full set of PowerPoint presentation slides that illustrate and support the book, available on a companion website

Introduction to Finite Element Vibration Analysis

Author: Maurice Petyt
Publisher: Cambridge University Press
ISBN: 1139490060
Format: PDF, ePub, Docs
Download Now
This is an introduction to the mathematical basis of finite element analysis as applied to vibrating systems. Finite element analysis is a technique that is very important in modeling the response of structures to dynamic loads. Although this book assumes no previous knowledge of finite element methods, those who do have knowledge will still find the book to be useful. It can be utilised by aeronautical, civil, mechanical, and structural engineers as well as naval architects. This second edition includes information on the many developments that have taken place over the last twenty years. Existing chapters have been expanded where necessary, and three new chapters have been included that discuss the vibration of shells and multi-layered elements and provide an introduction to the hierarchical finite element method.

The Mathematical Theory of Finite Element Methods

Author: Susanne C Brenner
Publisher: Springer Science & Business Media
ISBN: 1475736584
Format: PDF, ePub
Download Now
A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide

Nonlinear Continuum Mechanics for Finite Element Analysis

Author: Javier Bonet
Publisher: Cambridge University Press
ISBN: 9781139467544
Format: PDF, Mobi
Download Now
Designing engineering components that make optimal use of materials requires consideration of the nonlinear characteristics associated with both manufacturing and working environments. The modeling of these characteristics can only be done through numerical formulation and simulation, and this requires an understanding of both the theoretical background and associated computer solution techniques. By presenting both nonlinear continuum analysis and associated finite element techniques under one roof, Bonet and Wood provide, in this edition of this successful text, a complete, clear, and unified treatment of these important subjects. New chapters dealing with hyperelastic plastic behavior are included, and the authors have thoroughly updated the FLagSHyP program, freely accessible at www.flagshyp.com. Worked examples and exercises complete each chapter, making the text an essential resource for postgraduates studying nonlinear continuum mechanics. It is also ideal for those in industry requiring an appreciation of the way in which their computer simulation programs work.

Structural Analysis with Finite Elements

Author: Friedel Hartmann
Publisher: Springer Science & Business Media
ISBN: 3540497021
Format: PDF, Mobi
Download Now
This book provides a solid introduction to the foundation and the application of the finite element method in structural analysis. It offers new theoretical insight and practical advice. This second edition contains additional sections on sensitivity analysis, on retrofitting structures, on the Generalized FEM (X-FEM) and on model adaptivity. An additional chapter treats the boundary element method, and related software is available at www.winfem.de.

Fundamentals of Finite Element Analysis

Author: Ioannis Koutromanos
Publisher: John Wiley & Sons
ISBN: 1119260086
Format: PDF, Kindle
Download Now
An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.