Applied Longitudinal Data Analysis

Author: Judith D. Singer
Publisher: Oxford University Press
ISBN: 9780199760725
Format: PDF, ePub
Download Now
Change is constant in everyday life. Infants crawl and then walk, children learn to read and write, teenagers mature in myriad ways, the elderly become frail and forgetful. Beyond these natural processes and events, external forces and interventions instigate and disrupt change: test scores may rise after a coaching course, drug abusers may remain abstinent after residential treatment. By charting changes over time and investigating whether and when events occur, researchers reveal the temporal rhythms of our lives. Applied Longitudinal Data Analysis is a much-needed professional book for empirical researchers and graduate students in the behavioral, social, and biomedical sciences. It offers the first accessible in-depth presentation of two of today's most popular statistical methods: multilevel models for individual change and hazard/survival models for event occurrence (in both discrete- and continuous-time). Using clear, concise prose and real data sets from published studies, the authors take you step by step through complete analyses, from simple exploratory displays that reveal underlying patterns through sophisticated specifications of complex statistical models. Applied Longitudinal Data Analysis offers readers a private consultation session with internationally recognized experts and represents a unique contribution to the literature on quantitative empirical methods. Visit http://www.ats.ucla.edu/stat/examples/alda.htm for: · Downloadable data sets · Library of computer programs in SAS, SPSS, Stata, HLM, MLwiN, and more · Additional material for data analysis

Longitudinal Data Analysis for the Behavioral Sciences Using R

Author: Jeffrey D. Long
Publisher: SAGE
ISBN: 1412982685
Format: PDF, Kindle
Download Now
This book is unique in its focus on showing students in the behavioral sciences how to analyze longitudinal data using R software. The book focuses on application, making it practical and accessible to students in psychology, education, and related fields, who have a basic foundation in statistics. It provides explicit instructions in R computer programming throughout the book, showing students exactly how a specific analysis is carried out and how output is interpreted.

Longitudinal Data Analysis

Author: Jason Newsom
Publisher: Routledge
ISBN: 1136705473
Format: PDF, ePub, Docs
Download Now
First Published in 2012. Routledge is an imprint of Taylor & Francis, an informa company.

Longitudinal Data Analysis

Author: Garrett Fitzmaurice
Publisher: CRC Press
ISBN: 9781420011579
Format: PDF
Download Now
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory and applications. It also focuses on the assorted challenges that arise in analyzing longitudinal data. After discussing historical aspects, leading researchers explore four broad themes: parametric modeling, nonparametric and semiparametric methods, joint models, and incomplete data. Each of these sections begins with an introductory chapter that provides useful background material and a broad outline to set the stage for subsequent chapters. Rather than focus on a narrowly defined topic, chapters integrate important research discussions from the statistical literature. They seamlessly blend theory with applications and include examples and case studies from various disciplines. Destined to become a landmark publication in the field, this carefully edited collection emphasizes statistical models and methods likely to endure in the future. Whether involved in the development of statistical methodology or the analysis of longitudinal data, readers will gain new perspectives on the field.

Applied Longitudinal Analysis

Author: Garrett M. Fitzmaurice
Publisher: John Wiley & Sons
ISBN: 1118551796
Format: PDF, Mobi
Download Now
Praise for the First Edition ". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis." —Journal of the American Statistical Association Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of longitudinal data that can be applied across various fields of study, from the health and medical sciences to the social and behavioral sciences. The authors incorporate their extensive academic and research experience along with various updates that have been made in response to reader feedback. The Second Edition features six newly added chapters that explore topics currently evolving in the field, including: Fixed effects and mixed effects models Marginal models and generalized estimating equations Approximate methods for generalized linear mixed effects models Multiple imputation and inverse probability weighted methods Smoothing methods for longitudinal data Sample size and power Each chapter presents methods in the setting of applications to data sets drawn from the health sciences. New problem sets have been added to many chapters, and a related website features sample programs and computer output using SAS, Stata, and R, as well as data sets and supplemental slides to facilitate a complete understanding of the material. With its strong emphasis on multidisciplinary applications and the interpretation of results, Applied Longitudinal Analysis, Second Edition is an excellent book for courses on statistics in the health and medical sciences at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and professionals in the medical, public health, and pharmaceutical fields as well as those in social and behavioral sciences who would like to learn more about analyzing longitudinal data.

Modeling Longitudinal Data

Author: Robert E. Weiss
Publisher: Springer Science & Business Media
ISBN: 0387283145
Format: PDF
Download Now
The book features many figures and tables illustrating longitudinal data and numerous homework problems. The associated web site contains many longitudinal data sets, examples of computer code, and labs to re-enforce the material. Weiss emphasizes continuous data rather than discrete data, graphical and covariance methods, and generalizations of regression rather than generalizations of analysis of variance.

Multilevel and Longitudinal Modeling with IBM SPSS

Author: Ronald H. Heck
Publisher: Routledge
ISBN: 1135074240
Format: PDF, ePub
Download Now
This book demonstrates how to use multilevel and longitudinal modeling techniques available in the IBM SPSS mixed-effects program (MIXED). Annotated screen shots provide readers with a step-by-step understanding of each technique and navigating the program. Readers learn how to set up, run, and interpret a variety of models. Diagnostic tools, data management issues, and related graphics are introduced throughout. Annotated syntax is also available for those who prefer this approach. Extended examples illustrate the logic of model development to show readers the rationale of the research questions and the steps around which the analyses are structured. The data used in the text and syntax examples are available at www.routledge.com/9780415817110. Highlights of the new edition include: Updated throughout to reflect IBM SPSS Version 21. Further coverage of growth trajectories, coding time-related variables, covariance structures, individual change and longitudinal experimental designs (Ch.5). Extended discussion of other types of research designs for examining change (e.g., regression discontinuity, quasi-experimental) over time (Ch.6). New examples specifying multiple latent constructs and parallel growth processes (Ch. 7). Discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures (Ch.1). The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques which facilitate working with multilevel, longitudinal, and cross-classified data sets. Chapters 3 and 4 introduce the basics of multilevel modeling: developing a multilevel model, interpreting output, and trouble-shooting common programming and modeling problems. Models for investigating individual and organizational change are presented in chapters 5 and 6, followed by models with multivariate outcomes in chapter 7. Chapter 8 provides an illustration of multilevel models with cross-classified data structures. The book concludes with ways to expand on the various multilevel and longitudinal modeling techniques and issues when conducting multilevel analyses. Ideal as a supplementary text for graduate courses on multilevel and longitudinal modeling, multivariate statistics, and research design taught in education, psychology, business, and sociology, this book’s practical approach also appeals to researchers in these fields. The book provides an excellent supplement to Heck & Thomas’s An Introduction to Multilevel Modeling Techniques, 2nd Edition; however, it can also be used with any multilevel and/or longitudinal modeling book or as a stand-alone text.

Analysis of Longitudinal Data

Author: Peter Diggle
Publisher: Oxford University Press
ISBN: 0199676755
Format: PDF, Mobi
Download Now
This second edition has been completely revised and expanded to become the most up-to-date and thorough professional reference text in this fast-moving area of biostatistics. It contains an additional two chapters on fully parametric models for discrete repeated measures data and statistical models for time-dependent predictors.

Multilevel Analysis

Author: Professor Tom A B a B Snijders
Publisher: SAGE
ISBN: 9781446236574
Format: PDF, ePub, Mobi
Download Now
The main methods, techniques and issues for carrying out multilevel modeling and analysis are covered in this book. The book is an applied introduction to the topic, providing a clear conceptual understanding of the issues involved in multilevel analysis and will be a useful reference tool. Information on designing multilevel studies, sampling, testing and model specification and interpretation of models is provided. A comprehensive guide to the software available is included. Multilevel Analysis is the ideal guide for researchers and applied statisticians in the social sciences, including education, but will also interest researchers in economics, and biological, medical and health disciplines.