Applied Medical Statistics Using SAS

Author: Geoff Der
Publisher: CRC Press
ISBN: 1439867976
Format: PDF, ePub
Download Now
Written with medical statisticians and medical researchers in mind, this intermediate-level reference explores the use of SAS for analyzing medical data. Applied Medical Statistics Using SAS covers the whole range of modern statistical methods used in the analysis of medical data, including regression, analysis of variance and covariance, longitudinal and survival data analysis, missing data, generalized additive models (GAMs), and Bayesian methods. The book focuses on performing these analyses using SAS, the software package of choice for those analysing medical data. Features Covers the planning stage of medical studies in detail; several chapters contain details of sample size estimation Illustrates methods of randomisation that might be employed for clinical trials Covers topics that have become of great importance in the 21st century, including Bayesian methods and multiple imputation Its breadth and depth, coupled with the inclusion of all the SAS code, make this book ideal for practitioners as well as for a graduate class in biostatistics or public health. Complete data sets, all the SAS code, and complete outputs can be found on an associated website: http://support.sas.com/amsus

Statistical Analysis of Medical Data Using SAS

Author: Geoff Der
Publisher: CRC Press
ISBN: 9781584884699
Format: PDF, ePub
Download Now
Statistical analysis is ubiquitous in modern medical research. Logistic regression, generalized linear models, random effects models, and Cox's regression all have become commonplace in the medical literature. But while statistical software such as SAS make routine application of these techniques possible, users who are not primarily statisticians must take care to correctly implement the various procedures and correctly interpret the output. Statistical Analysis of Medical Data Using SAS demonstrates how to use SAS to analyze medical data. Each chapter addresses a particular analysis method. The authors briefly describe each procedure, but focus on its SAS implementation and properly interpreting the output. The carefully designed presentation relegates the theoretical details to "Displays," so that the code and results can be explored without interruption. All of the code and data sets used in the book are available for download from either the SAS Web site or www.crcpress.com. Der and Everitt, authors of the best-selling Handbook of Statistical Analyses Using SAS, bring all of their considerable talent and experience to bear in this book. Step-by-step instructions, lucid explanations and clear examples combine to form an outstanding, self-contained guide--suitable for medical researchers and statisticians alike--to using SAS to analyze medical data.

Essential Statistics Using SAS University Edition

Author: Geoff Der
Publisher: SAS Institute
ISBN: 1629600946
Format: PDF, Mobi
Download Now
Students and instructors of statistics courses using SAS University Edition will welcome this book. Learning fundamental statistics is essential to solving problems with SAS. Essential Statistics Using SAS University Edition demonstrates how to use SAS University Edition to apply a variety of statistical methodologies, from the simple to the not-so-simple, to a range of data sets. Learn how to apply the appropriate statistical method to answer a particular question about a data set, and correctly interpret the numerical results that you obtain. SAS University Edition users who are new to SAS or who need a refresher course will benefit from the statistics overview and topics, such as multiple linear regression, logistic regression, and Poisson regression.

Handbook of Statistical Analyses Using SAS

Author: Geoff Der
Publisher: Chapman and Hall/CRC
ISBN:
Format: PDF, ePub, Mobi
Download Now
This essential handbook provides an introduction to the use of SAS for a variety of statistical analyses. Each chapter describes a particular technique applied to a particular data set, describes the relevant questions, gives a brief account of the methods used, details the SAS instructions needed to undertake analysis, and interprets the SAS output. Handbook of Statistical Analysis Using SAS serves as an easy introduction to using SAS for statistics and as a stepping stone to using the more comprehensive SAS manuals available. Statistical users of SAS, especially in the pharmaceutical industry and medical research, will find this book of particular interest.

Applied Linear Models with SAS

Author: Daniel Zelterman
Publisher: Cambridge University Press
ISBN: 1139489003
Format: PDF, Kindle
Download Now
This textbook for a second course in basic statistics for undergraduates or first-year graduate students introduces linear regression models and describes other linear models including Poisson regression, logistic regression, proportional hazards regression, and nonparametric regression. Numerous examples drawn from the news and current events with an emphasis on health issues illustrate these concepts. Assuming only a pre-calculus background, the author keeps equations to a minimum and demonstrates all computations using SAS. Most of the programs and output are displayed in a self-contained way, with an emphasis on the interpretation of the output in terms of how it relates to the motivating example. Plenty of exercises conclude every chapter. All of the datasets and SAS programs are available from the book's website, along with other ancillary material.

SAS for Data Analysis

Author: Mervyn G. Marasinghe
Publisher: Springer Science & Business Media
ISBN: 9780387773728
Format: PDF, ePub, Docs
Download Now
This book is intended for use as the textbook in a second course in applied statistics that covers topics in multiple regression and analysis of variance at an intermediate level. Generally, students enrolled in such courses are p- marily graduate majors or advanced undergraduate students from a variety of disciplines. These students typically have taken an introductory-level s- tistical methods course that requires the use a software system such as SAS for performing statistical analysis. Thus students are expected to have an - derstanding of basic concepts of statistical inference such as estimation and hypothesis testing. Understandably, adequate time is not available in a ?rst course in stat- tical methods to cover the use of a software system adequately in the amount of time available for instruction. The aim of this book is to teach how to use the SAS system for data analysis. The SAS language is introduced at a level of sophistication not found in most introductory SAS books. Important features such as SAS data step programming, pointers, and line-hold spe- ?ers are described in detail. The powerful graphics support available in SAS is emphasized throughout, and many worked SAS program examples contain graphic components.

Elementary Statistics Using SAS

Author: Sandra D. Schlotzhauer
Publisher: SAS Institute
ISBN: 1629597937
Format: PDF, ePub, Docs
Download Now
Bridging the gap between statistics texts and SAS documentation, Elementary Statistics Using SAS is written for those who want to perform analyses to solve problems. The first section of the book explains the basics of SAS data sets and shows how to use SAS for descriptive statistics and graphs. The second section discusses fundamental statistical concepts, including normality and hypothesis testing. The remaining sections of the book show analyses for comparing two groups, comparing multiple groups, fitting regression equations, and exploring contingency tables. For each analysis, author Sandra Schlotzhauer explains assumptions, statistical approach, and SAS methods and syntax, and makes conclusions from the results. Statistical methods covered include two-sample t-tests, paired-difference t-tests, analysis of variance, multiple comparison techniques, regression, regression diagnostics, and chi-square tests. Elementary Statistics Using SAS is a thoroughly revised and updated edition of Ramon Littell and Sandra Schlotzhauer's SAS System for Elementary Statistical Analysis.

Analysis of Observational Health Care Data Using SAS

Author: Douglas E. Faries
Publisher: SAS Institute
ISBN: 9781607644248
Format: PDF, ePub, Mobi
Download Now
This book guides researchers in performing and presenting high-quality analyses of all kinds of non-randomized studies, including analyses of observational studies, claims database analyses, assessment of registry data, survey data, pharmaco-economic data, and many more applications. The text is sufficiently detailed to provide not only general guidance, but to help the researcher through all of the standard issues that arise in such analyses. Just enough theory is included to allow the reader to understand the pros and cons of alternative approaches and when to use each method. The numerous contributors to this book illustrate, via real-world numerical examples and SAS code, appropriate implementations of alternative methods. The end result is that researchers will learn how to present high-quality and transparent analyses that will lead to fair and objective decisions from observational data. This book is part of the SAS Press program.

Common Statistical Methods for Clinical Research with SAS Examples

Author: Glenn A. Walker
Publisher: SAS Institute
ISBN: 1607644258
Format: PDF, Docs
Download Now
Thoroughly updated edition of the popular introductory statistics book for clinical researchers. This new edition has been extensively updated to include the use of ODS graphics in numerous examples as well as a new emphasis on PROC MIXED.

Using SAS for Data Management Statistical Analysis and Graphics

Author: Ken Kleinman
Publisher: CRC Press
ISBN: 9781439827581
Format: PDF, Kindle
Download Now
Quick and Easy Access to Key Elements of Documentation Includes worked examples across a wide variety of applications, tasks, and graphics A unique companion for statistical coders, Using SAS for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in SAS, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. Organized by short, clear descriptive entries, the book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, multivariate methods, and the creation of graphics. Through the extensive indexing, cross-referencing, and worked examples in this text, users can directly find and implement the material they need. The text includes convenient indices organized by topic and SAS syntax. Demonstrating the SAS code in action and facilitating exploration, the authors present example analyses that employ a single data set from the HELP study. They also provide several case studies of more complex applications. Data sets and code are available for download on the book’s website. Helping to improve your analytical skills, this book lucidly summarizes the features of SAS most often used by statistical analysts. New users of SAS will find the simple approach easy to understand while more expert SAS programmers will appreciate the invaluable source of task-oriented information.