Applied Probability and Stochastic Processes

Author: Richard M. Feldman
Publisher: Springer Science & Business Media
ISBN: 9783642051586
Format: PDF
Download Now
This book is a result of teaching stochastic processes to junior and senior undergr- uates and beginning graduate students over many years. In teaching such a course, we have realized a need to furnish students with material that gives a mathematical presentation while at the same time providing proper foundations to allow students to build an intuitive feel for probabilistic reasoning. We have tried to maintain a b- ance in presenting advanced but understandable material that sparks an interest and challenges students, without the discouragement that often comes as a consequence of not understanding the material. Our intent in this text is to develop stochastic p- cesses in an elementary but mathematically precise style and to provide suf?cient examples and homework exercises that will permit students to understand the range of application areas for stochastic processes. We also practice active learning in the classroom. In other words, we believe that the traditional practice of lecturing continuously for 50 to 75 minutes is not a very effective method for teaching. Students should somehow engage in the subject m- ter during the teaching session. One effective method for active learning is, after at most 20 minutes of lecture, to assign a small example problem for the students to work and one important tool that the instructor can utilize is the computer. So- times we are fortunate to lecture students in a classroom containing computers with a spreadsheet program, usually Microsoft’s Excel.

Applied Probability and Stochastic Processes

Author: Michel K. Ochi
Publisher: Wiley-Interscience
ISBN:
Format: PDF, Mobi
Download Now
This introduction to modern concepts of applied stochastic processes is written for a broad range of applications in diverse areas of engineering and the physical sciences (unlike other books, which are written primarily for communications or electrical engineering). Emphasis is on clarifying the basic principles supporting current prediction techniques. The first eight chapters present the probability theory relevant to analysis of stochastic processes. The following nine chapters discuss principles, advanced techniques (including the procedures of spectral analysis and the development of the probability density function) and applications. Also features material found in the recent literature such as higher-order spectral analysis, the joint probability distribution of amplitudes and periods and non-Gaussian random processes. Includes numerous illustrative examples.

Applied Probability and Stochastic Processes

Author: Frank Beichelt
Publisher: CRC Press
ISBN: 1482257653
Format: PDF, ePub, Mobi
Download Now
Applied Probability and Stochastic Processes, Second Edition presents a self-contained introduction to elementary probability theory and stochastic processes with a special emphasis on their applications in science, engineering, finance, computer science, and operations research. It covers the theoretical foundations for modeling time-dependent random phenomena in these areas and illustrates applications through the analysis of numerous practical examples. The author draws on his 50 years of experience in the field to give your students a better understanding of probability theory and stochastic processes and enable them to use stochastic modeling in their work. New to the Second Edition Completely rewritten part on probability theory—now more than double in size New sections on time series analysis, random walks, branching processes, and spectral analysis of stationary stochastic processes Comprehensive numerical discussions of examples, which replace the more theoretically challenging sections Additional examples, exercises, and figures Presenting the material in a student-friendly, application-oriented manner, this non-measure theoretic text only assumes a mathematical maturity that applied science students acquire during their undergraduate studies in mathematics. Many exercises allow students to assess their understanding of the topics. In addition, the book occasionally describes connections between probabilistic concepts and corresponding statistical approaches to facilitate comprehension. Some important proofs and challenging examples and exercises are also included for more theoretically interested readers.

Applied Probability and Stochastic Processes

Author: Frank Beichelt
Publisher: CRC Press
ISBN: 148225767X
Format: PDF, ePub
Download Now
Applied Probability and Stochastic Processes, Second Edition presents a self-contained introduction to elementary probability theory and stochastic processes with a special emphasis on their applications in science, engineering, finance, computer science, and operations research. It covers the theoretical foundations for modeling time-dependent random phenomena in these areas and illustrates applications through the analysis of numerous practical examples. The author draws on his 50 years of experience in the field to give your students a better understanding of probability theory and stochastic processes and enable them to use stochastic modeling in their work. New to the Second Edition Completely rewritten part on probability theory—now more than double in size New sections on time series analysis, random walks, branching processes, and spectral analysis of stationary stochastic processes Comprehensive numerical discussions of examples, which replace the more theoretically challenging sections Additional examples, exercises, and figures Presenting the material in a student-friendly, application-oriented manner, this non-measure theoretic text only assumes a mathematical maturity that applied science students acquire during their undergraduate studies in mathematics. Many exercises allow students to assess their understanding of the topics. In addition, the book occasionally describes connections between probabilistic concepts and corresponding statistical approaches to facilitate comprehension. Some important proofs and challenging examples and exercises are also included for more theoretically interested readers.

Applied Probability

Author: Valérie Girardin
Publisher: Springer
ISBN: 9783319974118
Format: PDF, ePub, Docs
Download Now
This textbook addresses postgraduate students in applied mathematics, probability, and statistics, as well as computer scientists, biologists, physicists and economists, who are seeking a rigorous introduction to applied stochastic processes. Pursuing a pedagogic approach, the content follows a path of increasing complexity, from the simplest random sequences to the advanced stochastic processes. Illustrations are provided from many applied fields, together with connections to ergodic theory, information theory, reliability and insurance. The main content is also complemented by a wealth of examples and exercises with solutions.

Probability and Stochastic Processes

Author: Roy D. Yates
Publisher: John Wiley & Sons
ISBN: 1118324560
Format: PDF
Download Now
This text introduces engineering students to probability theory and stochastic processes. Along with thorough mathematical development of the subject, the book presents intuitive explanations of key points in order to give students the insights they need to apply math to practical engineering problems. The first seven chapters contain the core material that is essential to any introductory course. In one-semester undergraduate courses, instructors can select material from the remaining chapters to meet their individual goals. Graduate courses can cover all chapters in one semester.

Fundamentals of Probability with Stochastic Processes

Author: Saeed Ghahramani
Publisher: CRC Press
ISBN: 042985627X
Format: PDF, Kindle
Download Now
"The 4th edition of Ghahramani's book is replete with intriguing historical notes, insightful comments, and well-selected examples/exercises that, together, capture much of the essence of probability. Along with its Companion Website, the book is suitable as a primary resource for a first course in probability. Moreover, it has sufficient material for a sequel course introducing stochastic processes and stochastic simulation." --Nawaf Bou-Rabee, Associate Professor of Mathematics, Rutgers University Camden, USA "This book is an excellent primer on probability, with an incisive exposition to stochastic processes included as well. The flow of the text aids its readability, and the book is indeed a treasure trove of set and solved problems. Every sub-topic within a chapter is supplemented by a comprehensive list of exercises, accompanied frequently by self-quizzes, while each chapter ends with a useful summary and another rich collection of review problems." --Dalia Chakrabarty, Department of Mathematical Sciences, Loughborough University, UK "This textbook provides a thorough and rigorous treatment of fundamental probability, including both discrete and continuous cases. The book’s ample collection of exercises gives instructors and students a great deal of practice and tools to sharpen their understanding. Because the definitions, theorems, and examples are clearly labeled and easy to find, this book is not only a great course accompaniment, but an invaluable reference." --Joshua Stangle, Assistant Professor of Mathematics, University of Wisconsin – Superior, USA This one- or two-term calculus-based basic probability text is written for majors in mathematics, physical sciences, engineering, statistics, actuarial science, business and finance, operations research, and computer science. It presents probability in a natural way: through interesting and instructive examples and exercises that motivate the theory, definitions, theorems, and methodology. This book is mathematically rigorous and, at the same time, closely matches the historical development of probability. Whenever appropriate, historical remarks are included, and the 2096 examples and exercises have been carefully designed to arouse curiosity and hence encourage students to delve into the theory with enthusiasm. New to the Fourth Edition: 538 new examples and exercises have been added, almost all of which are of applied nature in realistic contexts Self-quizzes at the end of each section and self-tests at the end of each chapter allow students to check their comprehension of the material An all-new Companion Website includes additional examples, complementary topics not covered in the previous editions, and applications for more in-depth studies, as well as a test bank and figure slides. It also includes complete solutions to all self-test and self-quiz problems Saeed Ghahramani is Professor of Mathematics and Dean of the College of Arts and Sciences at Western New England University. He received his Ph.D. from the University of California at Berkeley in Mathematics and is a recipient of teaching awards from Johns Hopkins University and Towson University. His research focuses on applied probability, stochastic processes, and queuing theory.

Applied Probability and Stochastic Processes

Author: George Shanthikumar
Publisher: Springer Science & Business Media
ISBN: 1461551919
Format: PDF, ePub, Docs
Download Now
Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability in solving problems in modern society.

Applied Probability and Stochastic Processes

Author: CTI Reviews
Publisher: Cram101 Textbook Reviews
ISBN: 1467207969
Format: PDF, ePub, Docs
Download Now
Facts101 is your complete guide to Applied Probability and Stochastic Processes. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

Fundamentals of Applied Probability and Random Processes

Author: Oliver Ibe
Publisher: Academic Press
ISBN: 0128010355
Format: PDF, ePub, Mobi
Download Now
The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. Demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings Expands readers’ understanding of disruptive statistics in a new chapter (chapter 8) Provides new chapter on Introduction to Random Processes with 14 new illustrations and tables explaining key concepts. Includes two chapters devoted to the two branches of statistics, namely descriptive statistics (chapter 8) and inferential (or inductive) statistics (chapter 9).