Asymptotics in Statistics

Author: Lucien Le Cam
Publisher: Springer Science & Business Media
ISBN: 1461211662
Format: PDF
Download Now
This is the second edition of a coherent introduction to the subject of asymptotic statistics as it has developed over the past 50 years. It differs from the first edition in that it is now more 'reader friendly' and also includes a new chapter on Gaussian and Poisson experiments, reflecting their growing role in the field. Most of the subsequent chapters have been entirely rewritten and the nonparametrics of Chapter 7 have been amplified. The volume is not intended to replace monographs on specialized subjects, but will help to place them in a coherent perspective. It thus represents a link between traditional material - such as maximum likelihood, and Wald's Theory of Statistical Decision Functions -- together with comparison and distances for experiments. Much of the material has been taught in a second year graduate course at Berkeley for 30 years.

Asymptotics in Statistics

Author: Lucien Le Cam
Publisher: Springer Science & Business Media
ISBN: 146840377X
Format: PDF, Kindle
Download Now
In the summer of 1968 one of the present authors (LLC) had the pleasure of giving a sequence of lectures at the University of Mon treal. Lecture notes were collected and written out by Drs. Catherine Doleans, Jean Haezendonck and Roch Roy. They were published in French by the Presses of the University of Montreal as part of their series of Seminaires de Mathematiques Superieures. Twenty years later it was decided that a Chinese translation could be useful, but upon prodding by Professor Shanti Gupta at Purdue we concluded that the notes should be updated and rewritten in English and in Chinese. The present volume is the result of that effort. We have preserved the general outline of the lecture notes, but we have deleted obsolete material and sketched some of the results acquired during the past twenty years. This means that while the original notes concentrated on the LAN situation we have included here some results of Jeganathan and others on the LAMN case. Also included are versions of the Hajek-Le Cam asymptotic minimax and convolution theorems with some of their implications. We have not attempted to give complete coverage of the subject and have often stated theorems without indicating their proofs.

Asymptotics in Statistics

Author: Lucien Le Cam
Publisher: Springer Science & Business Media
ISBN: 9780387950365
Format: PDF, Mobi
Download Now
Most of the subsequent chapters have been entirely rewritten, and the nonparametrics of Chapter 7 have been amplified.".

Asymptotic Methods in Statistical Decision Theory

Author: Lucien Le Cam
Publisher: Springer Science & Business Media
ISBN: 1461249465
Format: PDF
Download Now
This book grew out of lectures delivered at the University of California, Berkeley, over many years. The subject is a part of asymptotics in statistics, organized around a few central ideas. The presentation proceeds from the general to the particular since this seemed the best way to emphasize the basic concepts. The reader is expected to have been exposed to statistical thinking and methodology, as expounded for instance in the book by H. Cramer [1946] or the more recent text by P. Bickel and K. Doksum [1977]. Another pos sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader is expected to possess some mathematical maturity, but not really a great deal of detailed mathematical knowledge. Very few mathematical objects are used; their assumed properties are simple; the results are almost always immediate consequences of the definitions. Some objects, such as vector lattices, may not have been included in the standard background of a student of statistics. For these we have provided a summary of relevant facts in the Appendix. The basic structures in the whole affair are systems that Blackwell called "experiments" and "transitions" between them. An "experiment" is a mathe matical abstraction intended to describe the basic features of an observational process if that process is contemplated in advance of its implementation. Typically, an experiment consists of a set E> of theories about what may happen in the observational process.

Asymptotic Theory of Statistics and Probability

Author: Anirban DasGupta
Publisher: Springer Science & Business Media
ISBN: 0387759700
Format: PDF
Download Now
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.

Introduction to Nonparametric Estimation

Author: Alexandre B. Tsybakov
Publisher: Springer Science & Business Media
ISBN: 0387790527
Format: PDF, Mobi
Download Now
Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.

Introduction to Statistical Limit Theory

Author: Alan M. Polansky
Publisher: CRC Press
ISBN: 1420076612
Format: PDF, Docs
Download Now
Helping students develop a good understanding of asymptotic theory, Introduction to Statistical Limit Theory provides a thorough yet accessible treatment of common modes of convergence and their related tools used in statistics. It also discusses how the results can be applied to several common areas in the field. The author explains as much of the background material as possible and offers a comprehensive account of the modes of convergence of random variables, distributions, and moments, establishing a firm foundation for the applications that appear later in the book. The text includes detailed proofs that follow a logical progression of the central inferences of each result. It also presents in-depth explanations of the results and identifies important tools and techniques. Through numerous illustrative examples, the book shows how asymptotic theory offers deep insight into statistical problems, such as confidence intervals, hypothesis tests, and estimation. With an array of exercises and experiments in each chapter, this classroom-tested book gives students the mathematical foundation needed to understand asymptotic theory. It covers the necessary introductory material as well as modern statistical applications, exploring how the underlying mathematical and statistical theories work together.

Asymptotic Theory of Statistical Inference for Time Series

Author: Masanobu Taniguchi
Publisher: Springer Science & Business Media
ISBN: 146121162X
Format: PDF, Mobi
Download Now
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.

Statistical Decision Theory

Author: F. Liese
Publisher: Springer Science & Business Media
ISBN: 0387731946
Format: PDF, ePub, Mobi
Download Now
For advanced graduate students, this book is a one-stop shop that presents the main ideas of decision theory in an organized, balanced, and mathematically rigorous manner, while observing statistical relevance. All of the major topics are introduced at an elementary level, then developed incrementally to higher levels. The book is self-contained as it provides full proofs, worked-out examples, and problems. The authors present a rigorous account of the concepts and a broad treatment of the major results of classical finite sample size decision theory and modern asymptotic decision theory. With its broad coverage of decision theory, this book fills the gap between standard graduate texts in mathematical statistics and advanced monographs on modern asymptotic theory.

Introduction to Empirical Processes and Semiparametric Inference

Author: Michael R. Kosorok
Publisher: Springer Science & Business Media
ISBN: 9780387749785
Format: PDF, ePub, Mobi
Download Now
Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.