Basic Transport Phenomena in Biomedical Engineering Third Edition

Author: Ronald L. Fournier
Publisher: CRC Press
ISBN: 1439826706
Format: PDF, Mobi
Download Now
Encompassing a variety of engineering disciplines and life sciences, the very scope and breadth of biomedical engineering presents challenges to creating a concise, entry level text that effectively introduces basic concepts without getting overly specialized in subject matter or rarified in language. Basic Transport Phenomena in Biomedical Engineering, Third Edition meets and overcomes these challenges to provide the beginning student with the foundational tools and the confidence they need to apply these techniques to problems of ever greater complexity. Bringing together fundamental engineering and life science principles, this highly accessible text provides a focused coverage of key momentum and mass transport concepts in biomedical engineering. It offers a basic review of units and dimensions, material balances, and problem-solving tips, and then emphasizes those chemical and physical transport processes that have applications in the development of artificial and bioartificial organs, controlled drug delivery systems, and tissue engineering. The book also includes a discussion of thermodynamic concepts and covers topics such as body fluids, osmosis and membrane filtration, physical and flow properties of blood, solute and oxygen transport, and pharmacokinetic analysis. It concludes with the application of these principles to extracorporeal devices as well as tissue engineering and bioartificial organs. Designed for the beginning student, Basic Transport Phenomena in Biomedical Engineering, Third Edition provides a quantitative understanding of the underlying physical, chemical, and biological phenomena involved. It offers mathematical models using the ‘shell balance" or compartmental approaches, along with numerous examples and end-of-chapter problems based on these mathematical models and in many cases these models are compared with actual experimental data. Encouraging students to work examples with the mathematical software package of their choice, this text provides them the opportunity to explore various aspects of the solution on their own, or apply these techniques as starting points for the solution to their own problems.

Transport Phenomena in Biomedical Engineering Artifical organ Design and Development and Tissue Engineering

Author: Kal Sharma
Publisher: McGraw Hill Professional
ISBN: 0071663983
Format: PDF, ePub
Download Now
A Cutting-Edge Guide to Applying Transport Phenomena Principles to Bioengineering Systems Transport Phenomena in Biomedical Engineering: Artificial Order Design and Development and Tissue Engineering explains how to apply the equations of continuity, momentum, energy, and mass to human anatomical systems. This authoritative resource presents solutions along with term-by-term medical significance. Worked exercises illustrate the equations derived, and detailed case studies highlight real-world examples of artificial organ design and human tissue engineering. Coverage includes: Fundamentals of fluid mechanics and principles of molecular diffusion Osmotic pressure, solvent permeability, and solute transport Rheology of blood and transport Gas transport Pharmacokinetics Tissue design Bioartificial organ design and immunoisolation Bioheat transport 541 end-of-chapter exercises and review questions 106 illustrations 1,469 equations derived from first principles

Biotransport Principles and Applications

Author: Robert J. Roselli
Publisher: Springer Science & Business Media
ISBN: 9781441981196
Format: PDF, ePub, Mobi
Download Now
Introduction to Biotransport Principles is a concise text covering the fundamentals of biotransport, including biological applications of: fluid, heat, and mass transport.

Introduction to Biomedical Engineering

Author: John Denis Enderle
Publisher: Academic Press
ISBN: 0123749794
Format: PDF, Docs
Download Now
Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume. Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical and engineering ethics. Enderle and Bronzino tackle these core topics at a level appropriate for senior undergraduate students and graduate students who are majoring in BME, or studying it as a combined course with a related engineering, biology or life science, or medical/pre-medical course. * NEW: Each chapter in the 3rd Edition is revised and updated, with new chapters and materials on compartmental analysis, biochemical engineering, transport phenomena, physiological modeling and tissue engineering. Chapters on peripheral topics have been removed and made avaialblw online, including optics and computational cell biology. * NEW: many new worked examples within chapters * NEW: more end of chapter exercises, homework problems * NEW: Image files from the text available in PowerPoint format for adopting instructors * Readers benefit from the experience and expertise of two of the most internationally renowned BME educators * Instructors benefit from a comprehensive teaching package including a fully worked solutions manual * A complete introduction and survey of BME * NEW: new chapters on compartmental analysis, biochemical engineering, and biomedical transport phenomena * NEW: revised and updated chapters throughout the book feature current research and developments in, for example biomaterials, tissue engineering, biosensors, physiological modeling, and biosignal processing. * NEW: more worked examples and end of chapter exercises * NEW: Image files from the text available in PowerPoint format for adopting instructors * As with prior editions, this third edition provides a historical look at the major developments across biomedical domains and covers the fundamental principles underlying biomedical engineering analysis, modeling, and design *bonus chapters on the web include: Rehabilitation Engineering and Assistive Technology, Genomics and Bioinformatics, and Computational Cell Biology and Complexity.

Numerical Methods in Biomedical Engineering

Author: Stanley Dunn
Publisher: Elsevier
ISBN: 9780080470801
Format: PDF, ePub
Download Now
Numerical Modeling in Biomedical Engineering brings together the integrative set of computational problem solving tools important to biomedical engineers. Through the use of comprehensive homework exercises, relevant examples and extensive case studies, this book integrates principles and techniques of numerical analysis. Covering biomechanical phenomena and physiologic, cell and molecular systems, this is an essential tool for students and all those studying biomedical transport, biomedical thermodynamics & kinetics and biomechanics. Supported by Whitaker Foundation Teaching Materials Program; ABET-oriented pedagogical layout Extensive hands-on homework exercises

Fundamentals of Chemical Reaction Engineering

Author: Mark E. Davis
Publisher: Courier Corporation
ISBN: 0486291316
Format: PDF, Kindle
Download Now
Appropriate for a one-semester undergraduate or first-year graduate course, this text introduces the quantitative treatment of chemical reaction engineering. It covers both homogeneous and heterogeneous reacting systems and examines chemical reaction engineering as well as chemical reactor engineering. Each chapter contains numerous worked-out problems and real-world vignettes involving commercial applications, a feature widely praised by reviewers and teachers. 2003 edition.

Fundamentals of Biomechanics

Author: Nihat Özkaya
Publisher: Springer
ISBN: 3319447386
Format: PDF
Download Now
This textbook integrates the classic fields of mechanics—statics, dynamics, and strength of materials—using examples from biology and medicine. The book is excellent for teaching either undergraduates in biomedical engineering programs or health care professionals studying biomechanics at the graduate level. Extensively revised from a successful third edition, Fundamentals of Biomechanics features a wealth of clear illustrations, numerous worked examples, and many problem sets. The book provides the quantitative perspective missing from more descriptive texts, without requiring an advanced background in mathematics. It will be welcomed for use in courses such as biomechanics and orthopedics, rehabilitation and industrial engineering, and occupational or sports medicine. This book: Introduces the fundamental concepts, principles, and methods that must be understood to begin the study of biomechanics Reinforces basic principles of biomechanics with repetitive exercises in class and homework assignments given throughout the textbook Includes over 100 new problem sets with solutions and illustrations

Circuits Signals and Systems for Bioengineers

Author: John Semmlow
Publisher: Academic Press
ISBN: 0128096268
Format: PDF, ePub, Docs
Download Now
Circuits, Signals and Systems for Bioengineers: A MATLAB-Based Introduction, Third Edition, guides the reader through the electrical engineering principles that can be applied to biological systems. It details the basic engineering concepts that underlie biomedical systems, medical devices, biocontrol and biomedical signal analysis, providing a solid foundation for students in important bioengineering concepts. Fully revised and updated to better meet the needs of instructors and students, the third edition introduces and develops concepts through computational methods that allow students to explore operations, such as correlations, convolution, the Fourier transform and the transfer function. New chapters have been added on image analysis, noise, stochastic processes and ergodicity, and new medical examples and applications are included throughout the text. Covers current applications in biocontrol, with examples from physiological systems modeling, such as the respiratory system Includes revised material throughout, with improved clarity of presentation and more biological, physiological and medical examples and applications Includes a new chapter on noise, stochastic processes, non-stationary and ergodicity Includes a separate new chapter featuring expanded coverage of image analysis Includes support materials, such as solutions, lecture slides, MATLAB data and functions needed to solve the problems

Tissue Mechanics

Author: Stephen C. Cowin
Publisher: Springer Science & Business Media
ISBN: 0387499857
Format: PDF, ePub, Docs
Download Now
The structures of living tissues are continually changing due to growth and response to the tissue environment, including the mechanical environment. Tissue Mechanics is an in-depth look at the mechanics of tissues. Tissue Mechanics describes the nature of the composite components of a tissue, the cellular processes that produce these constituents, the assembly of the constituents into a hierarchical structure, and the behavior of the tissue’s composite structure in the adaptation to its mechanical environment. Organized as a textbook for the student needing to acquire the core competencies, Tissue Mechanics will meet the demands of advanced undergraduate or graduate coursework in Biomedical Engineering, as well as, Chemical, Civil, and Mechanical Engineering. Key features: Detailed Illustrations Example problems, including problems at the end of sections A separate solutions manual available for course instructors A website (http://tissue-mechanics.com/) that has been established to provide supplemental material for the book, including downloadable additional chapters on specific tissues, downloadable PowerPoint presentations of all the book's chapters, and additional exercises and examples for the existing chapters. About the Authors: Stephen C. Cowin is a City University of New York Distinguished Professor, Departments of Biomedical and Mechanical Engineering, City College of the City University of New York and also an Adjunct Professor of Orthopaedics, at the Mt. Sinai School of Medicine in New York, New York. In 1985 he received the Society of Tulane Engineers and Lee H. Johnson Award for Teaching Excellence and a recipient of the European Society of Biomechanics Research Award in 1994. In 1999 he received the H. R. Lissner medal of the ASME for contributions to biomedical engineering. In 2004 he was elected to the National Academy of Engineering (NAE) and he also received the Maurice A. Biot medal of the American Society of Civil Engineers (ASCE). Stephen B. Doty is a Senior Scientist at Hospital for Special Surgery, New York, New York and Adjunct Professor, School of Dental and Oral Surgery, Columbia University, New York, NY. He has over 100 publications in the field of anatomy, developmental biology, and the physiology of skeletal and connective tissues. His honors include several commendations for participation in the Russian/NASA spaceflights, the Spacelab Life Science NASA spaceflights, and numerous Shuttle missions that studied the influence of spaceflight on skeletal physiology. He presently is on the scientific advisory board of the National Space Biomedical Research Institute, Houston, Texas.

Signals and Systems in Biomedical Engineering

Author: Suresh R. Devasahayam
Publisher: Springer Science & Business Media
ISBN: 1461542995
Format: PDF, ePub, Docs
Download Now
In the past few years Biomedical Engineering has received a great deal of attention as one of the emerging technologies in the last decade and for years to come, as witnessed by the many books, conferences, and their proceedings. Media attention, due to the applications-oriented advances in Biomedical Engineering, has also increased. Much of the excitement comes from the fact that technology is rapidly changing and new technological adventures become available and feasible every day. For many years the physical sciences contributed to medicine in the form of expertise in radiology and slow but steady contributions to other more diverse fields, such as computers in surgery and diagnosis, neurology, cardiology, vision and visual prosthesis, audition and hearing aids, artificial limbs, biomechanics, and biomaterials. The list goes on. It is therefore hard for a person unfamiliar with a subject to separate the substance from the hype. Many of the applications of Biomedical Engineering are rather complex and difficult to understand even by the not so novice in the field. Much of the hardware and software tools available are either too simplistic to be useful or too complicated to be understood and applied. In addition, the lack of a common language between engineers and computer scientists and their counterparts in the medical profession, sometimes becomes a barrier to progress.