Bayesian Estimation and Tracking

Author: Anton J. Haug
Publisher: John Wiley & Sons
ISBN: 1118287800
Format: PDF, ePub, Docs
Download Now
A practical approach to estimating and tracking dynamic systems in real-worl applications Much of the literature on performing estimation for non-Gaussian systems is short on practical methodology, while Gaussian methods often lack a cohesive derivation. Bayesian Estimation and Tracking addresses the gap in the field on both accounts, providing readers with a comprehensive overview of methods for estimating both linear and nonlinear dynamic systems driven by Gaussian and non-Gaussian noices. Featuring a unified approach to Bayesian estimation and tracking, the book emphasizes the derivation of all tracking algorithms within a Bayesian framework and describes effective numerical methods for evaluating density-weighted integrals, including linear and nonlinear Kalman filters for Gaussian-weighted integrals and particle filters for non-Gaussian cases. The author first emphasizes detailed derivations from first principles of eeach estimation method and goes on to use illustrative and detailed step-by-step instructions for each method that makes coding of the tracking filter simple and easy to understand. Case studies are employed to showcase applications of the discussed topics. In addition, the book supplies block diagrams for each algorithm, allowing readers to develop their own MATLAB® toolbox of estimation methods. Bayesian Estimation and Tracking is an excellent book for courses on estimation and tracking methods at the graduate level. The book also serves as a valuable reference for research scientists, mathematicians, and engineers seeking a deeper understanding of the topics.

Bayesian Estimation and Tracking

Author: Anton J. Haug
Publisher: John Wiley & Sons
ISBN: 0470621702
Format: PDF, Kindle
Download Now
"This book presents a practical approach to estimation methods that are designed to provide a clear path to programming all algorithms. Readers are provided with a firm understanding of Bayesian estimation methods and their interrelatedness. Starting with fundamental principles of Bayesian theory, the book shows how each tracking filter is derived from a slight modification to a previous filter. Such a development gives readers a broader understanding of the hierarchy of Bayesian estimation and tracking. Following the discussions about each tracking filter, the filter is put into block diagram form for ease in future recall and reference. The book presents a completely unified approach to Bayesian estimation and tracking, and this is accomplished by showing that the current posterior density for a state vector can be linked to its previous posterior density through the use of Bayes' Law and the Chapman-Kolmogorov integral. Predictive point estimates are then shown to be density-weighted integrals of nonlinear functions. The book also presents a methodology that makes implementation of the estimation methods simple (or, rather, simpler than they have been in the past). Each algorithm is accompanied by a block diagram that illustrates how all parts of the tracking filter are linked in a never-ending chain, from initialization to the loss of track. These filter block diagrams provide a ready picture for implementing the algorithms into programmable code. In addition, four completely worked out case studies give readers examples of implementation, from simulation models that generate noisy observations to worked-out applications for all tracking algorithms. This book also presents the development and application of track performance metrics, including how to generate error ellipses when implementing in real-world applications, how to calculate RMS errors in simulation environments, and how to calculate Cramer-Rao lower bounds for the RMS errors. These are also illustrated in the case study presentations"--

Bayesian Estimation and Tracking

Author: Anton J. Haug
Publisher: John Wiley & Sons
ISBN: 1118287835
Format: PDF
Download Now
A practical approach to estimating and tracking dynamic systems in real-worl applications Much of the literature on performing estimation for non-Gaussian systems is short on practical methodology, while Gaussian methods often lack a cohesive derivation. Bayesian Estimation and Tracking addresses the gap in the field on both accounts, providing readers with a comprehensive overview of methods for estimating both linear and nonlinear dynamic systems driven by Gaussian and non-Gaussian noices. Featuring a unified approach to Bayesian estimation and tracking, the book emphasizes the derivation of all tracking algorithms within a Bayesian framework and describes effective numerical methods for evaluating density-weighted integrals, including linear and nonlinear Kalman filters for Gaussian-weighted integrals and particle filters for non-Gaussian cases. The author first emphasizes detailed derivations from first principles of eeach estimation method and goes on to use illustrative and detailed step-by-step instructions for each method that makes coding of the tracking filter simple and easy to understand. Case studies are employed to showcase applications of the discussed topics. In addition, the book supplies block diagrams for each algorithm, allowing readers to develop their own MATLAB® toolbox of estimation methods. Bayesian Estimation and Tracking is an excellent book for courses on estimation and tracking methods at the graduate level. The book also serves as a valuable reference for research scientists, mathematicians, and engineers seeking a deeper understanding of the topics.

Bayesian Filtering and Smoothing

Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 110703065X
Format: PDF, ePub, Mobi
Download Now
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Advanced Kalman Filtering Least Squares and Modeling

Author: Bruce P. Gibbs
Publisher: John Wiley & Sons
ISBN: 1118003160
Format: PDF, ePub, Docs
Download Now
This book is intended primarily as a handbook for engineers who must design practical systems. Its primary goal is to discuss model development in sufficient detail so that the reader may design an estimator that meets all application requirements and is robust to modeling assumptions. Since it is sometimes difficult to a priori determine the best model structure, use of exploratory data analysis to define model structure is discussed. Methods for deciding on the “best” model are also presented. A second goal is to present little known extensions of least squares estimation or Kalman filtering that provide guidance on model structure and parameters, or make the estimator more robust to changes in real-world behavior. A third goal is discussion of implementation issues that make the estimator more accurate or efficient, or that make it flexible so that model alternatives can be easily compared. The fourth goal is to provide the designer/analyst with guidance in evaluating estimator performance and in determining/correcting problems. The final goal is to provide a subroutine library that simplifies implementation, and flexible general purpose high-level drivers that allow both easy analysis of alternative models and access to extensions of the basic filtering. Supplemental materials and up-to-date errata are downloadable at http://booksupport.wiley.com.

Tracking and Kalman filtering made easy

Author: Eli Brookner
Publisher: Wiley-Interscience
ISBN: 9780471184072
Format: PDF
Download Now
A unique, easy-to-use guide to radar tracking and Kalman filtering This book presents the first truly accessible treatment of radar tracking; Kalman, Swerling, and Bayes filters for linear and nonlinear ballistic and satellite tracking systems; and the voltage-processing methods (Givens, Householder, and Gram-Schmidt) for least-squares filtering to correct for computer round-off errors. Tracking and Kalman Filtering Made Easy emphasizes the physical and geometric aspects of radar filters as well as the beauty and simplicity of their mathematics. An abundance of design equations, procedures, and curves allows readers to design tracking filters quickly and test their performance using only a pocket calculator! The text incorporates problems and solutions, figures and photographs, and astonishingly simple derivations for various filters. It tackles problems involving clutter returns, redundant target detections, inconsistent data, track-start and track-drop rules, data association, matched filtering, tracking with chirp waveform, and more. The book also covers useful techniques such as the moving target detector (MTD) clutter rejection technique. All explanations are given in clear and simple terms, including: * The voltage-processing approach to least-squares filtering * The correlation between such procedures as discrete orthogonal Legendre polynomial (DOLP) and voltage processing * The mathematical sameness of tracking and estimation problems on the one hand, and sidelobe canceling and adaptive array processing on the other * The massively parallel systolic array sidelobe canceler processor * Important computational accuracy issues * An appended comparison between the Kalman and the Swerling filters, written by Dr. Peter Swerling Tracking and Kalman Filtering Made Easy is invaluable for engineers, scientists, and mathematicians involved in tracking filter design. Its straightforward approach makes it an excellent textbook for senior-undergraduate and first-year graduate courses.

Beyond the Kalman Filter Particle Filters for Tracking Applications

Author: Branko Ristic
Publisher: Artech House
ISBN: 9781580538510
Format: PDF, ePub, Docs
Download Now
For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.

Bayesian Multiple Target Tracking Second Edition

Author: Lawrence D. Stone
Publisher: Artech House
ISBN: 1608075532
Format: PDF, Kindle
Download Now
This second edition has undergone substantial revision from the 1999 first edition, recognizing that a lot has changed in the multiple target tracking field. One of the most dramatic changes is in the widespread use of particle filters to implement nonlinear, non-Gaussian Bayesian trackers. This book views multiple target tracking as a Bayesian inference problem. Within this framework it develops the theory of single target tracking, multiple target tracking, and likelihood ratio detection and tracking. In addition to providing a detailed description of a basic particle filter that implements the Bayesian single target recursion, this resource provides numerous examples that involve the use of particle filters. With these examples illustrating the developed concepts, algorithms, and approaches -- the book helps radar engineers develop tracking solutions when observations are non-linear functions of target state, when the target state distributions or measurement error distributions are not Gaussian, in low data rate and low signal to noise ratio situations, and when notions of contact and association are merged or unresolved among more than one target.

Applied Optimal Estimation

Author: Arthur Gelb
Publisher: MIT Press
ISBN: 9780262570480
Format: PDF, Mobi
Download Now
This is the first book on the optimal estimation that places its major emphasis on practical applications, treating the subject more from an engineering than a mathematical orientation. Even so, theoretical and mathematical concepts are introduced and developed sufficiently to make the book a self-contained source of instruction for readers without prior knowledge of the basic principles of the field. The work is the product of the technical staff of the The Analytic Sciences Corporation (TASC), an organization whose success has resulted largely from its applications of optimal estimation techniques to a wide variety of real situations involving large-scale systemsArthur Gelb writes in the Foreword that "It is our intent throughout to provide a simple and interesting picture of the central issues underlying modern estimation theory and practice. Heuristic, rather than theoretically elegant, arguments are used extensively, with emphasis on physical insights and key questions of practical importance."Numerous illustrative examples, many based on actual applications, have been interspersed throughout the text to lead the student to a concrete understanding of the theoretical material. The inclusion of problems with "built-in" answers at the end of each of the nine chapters further enhances the self-study potential of the text.After a brief historical prelude, the book introduces the mathematics underlying random process theory and state-space characterization of linear dynamic systems. The theory and practice of optimal estimation is them presented, including filtering, smoothing, and prediction. Both linear and non-linear systems, and continuous- and discrete-time cases, are covered in considerable detail. New results are described concerning the application of covariance analysis to non-linear systems and the connection between observers and optimal estimators. The final chapters treat such practical and often pivotal issues as suboptimal structure, and computer loading considerations.This book is an outgrowth of a course given by TASC at a number of US Government facilities. Virtually all of the members of the TASC technical staff have, at one time and in one way or another, contributed to the material contained in the work

Best Practices in Faculty Evaluation

Author: Jeffrey L. Buller
Publisher: John Wiley & Sons
ISBN: 1118237889
Format: PDF
Download Now
Praise for Best Practices in Faculty Evaluation "Jeffrey Buller, a leading and respected voice in higher education, has written a truly practical and highly useful book on the increasingly important topic of faculty evaluation. This highly readable book is a 'must have/must read' book for every dean, chair, and faculty member in all institutions of higher education." —Robert E. Cipriano, author, Facilitating a Collegial Department in Higher Education: Strategies for Success; former chair of Southern Connecticut State University's Recreation and Leisure Studies Department "Buller has done it again. This latest book meets a never-ending need of all colleges and universities. It's the best treatment I've ever found of the critical dynamics of faculty evaluations—the associated history and philosophy, but especially how to get it right when conducting pretenure, tenure, and posttenure reviews. Every P&T committee, every chair, every dean will welcome a copy." —R. Kent Crookston, author, Working with Problem Faculty: A Six-Step Guide for Department Chairs; director of the Academic Administrative Support Program at the Brigham Young University Faculty Center "Finally, a comprehensive volume replete with practical ideas and seasoned advice about how to effectively handle faculty performance evaluations. This author really understands the lack of preparation and confidence that most academic administrators feel when asked to function as both judge and coach. If you need concrete strategies for dealing with all aspects of the evaluation process, this book won't disappoint you. The content and case studies are right on the money."—Christine Licata, author, Post-Tenure Faculty Review and Renewal; senior associate provost, Rochester Institute of Technology