Bayesian Inference for Probabilistic Risk Assessment

Author: Dana Kelly
Publisher: Springer Science & Business Media
ISBN: 9781849961875
Format: PDF, ePub
Download Now
Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis “building blocks” that can be modified, combined, or used as-is to solve a variety of challenging problems. The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking. Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models.

Safety and Risk Modeling and Its Applications

Author: Hoang Pham
Publisher: Springer Science & Business Media
ISBN: 9780857294708
Format: PDF, Mobi
Download Now
Safety and Risk Modeling presents the latest theories and methods of safety and risk with an emphasis on safety and risk in modeling. It covers applications in several areas including transportations and security risk assessments, as well as applications related to current topics in safety and risk. Safety and Risk Modeling is a valuable resource for understanding the latest developments in both qualitative and quantitative methods of safety and risk analysis and their applications in operating environments. Each chapter has been written by active researchers or experienced practitioners to bridge the gap between theory and practice and to trigger new research challenges in safety and risk. Topics include: safety engineering, system maintenance, safety in design, failure analysis, and risk concept and modelling. Postgraduate students, researchers, and practitioners in many fields of engineering, operations research, management, and statistics will find Safety and Risk Modeling a state-of-the-art survey of reliability and quality in design and practice.

Reliability Engineering and Risk Analysis

Author: Mohammad Modarres
Publisher: CRC Press
ISBN: 149874589X
Format: PDF
Download Now
This undergraduate and graduate textbook provides a practical and comprehensive overview of reliability and risk analysis techniques. Written for engineering students and practicing engineers, the book is multi-disciplinary in scope. The new edition has new topics in classical confidence interval estimation; Bayesian uncertainty analysis; models for physics-of-failure approach to life estimation; extended discussions on the generalized renewal process and optimal maintenance; and further modifications, updates, and discussions. The book includes examples to clarify technical subjects and many end of chapter exercises. PowerPoint slides and a Solutions Manual are also available.

Satisfying Safety Goals by Probabilistic Risk Assessment

Author: Hiromitsu Kumamoto
Publisher: Springer Science & Business Media
ISBN: 1846286824
Format: PDF, ePub
Download Now
This book is a methodological approach to the goal-based safety design procedure that will soon be an international requirement. This is the first single volume book to describe how to satisfy safety goals by modern reliability engineering. Its focus is on the quantitative aspects of the international standards using a methodological approach. Case studies illustrate the methodologies presented.

Risk and Reliability Analysis Theory and Applications

Author: Paolo Gardoni
Publisher: Springer
ISBN: 3319524259
Format: PDF
Download Now
This book presents a unique collection of contributions from some of the foremost scholars in the field of risk and reliability analysis. Combining the most advanced analysis techniques with practical applications, it is one of the most comprehensive and up-to-date books available on risk-based engineering. All the fundamental concepts needed to conduct risk and reliability assessments are covered in detail, providing readers with a sound understanding of the field and making the book a powerful tool for students and researchers alike. This book was prepared in honor of Professor Armen Der Kiureghian, one of the fathers of modern risk and reliability analysis.

Reliability and Safety Engineering

Author: Ajit Kumar Verma
Publisher: Springer
ISBN: 1447162692
Format: PDF, Docs
Download Now
Reliability and safety are core issues that must be addressed throughout the life cycle of engineering systems. Reliability and Safety Engineering presents an overview of the basic concepts, together with simple and practical illustrations. The authors present reliability terminology in various engineering fields, viz., electronics engineering, software engineering, mechanical engineering, structural engineering and power systems engineering. The book describes the latest applications in the area of probabilistic safety assessment, such as technical specification optimization, risk monitoring and risk informed in-service inspection. Reliability and safety studies must, inevitably, deal with uncertainty, so the book includes uncertainty propagation methods: Monte Carlo simulation, fuzzy arithmetic, Dempster-Shafer theory and probability bounds. Reliability and Safety Engineering also highlights advances in system reliability and safety assessment including dynamic system modeling and uncertainty management. Case studies from typical nuclear power plants as well as from structural, software and electronic systems are also discussed. Reliability and Safety Engineering combines discussions of the existing literature on basic concepts and applications with state-of-the-art methods used in reliability and risk assessment of engineering systems. It is designed to assist practicing engineers, students and researchers in the areas of reliability engineering and risk analysis.

Quality and Reliability Management and Its Applications

Author: Hoang Pham
Publisher: Springer
ISBN: 1447167783
Format: PDF, Docs
Download Now
Integrating development processes, policies, and reliability predictions from the beginning of the product development lifecycle to ensure high levels of product performance and safety, this book helps companies overcome the challenges posed by increasingly complex systems in today’s competitive marketplace. Examining both research on and practical aspects of product quality and reliability management with an emphasis on applications, the book features contributions written by active researchers and/or experienced practitioners in the field, so as to effectively bridge the gap between theory and practice and address new research challenges in reliability and quality management in practice. Postgraduates, researchers and practitioners in the areas of reliability engineering and management, amongst others, will find the book to offer a state-of-the-art survey of quality and reliability management and practices.

Risk Analysis in Engineering

Author: Mohammad Modarres
Publisher: CRC Press
ISBN: 1420003496
Format: PDF, ePub
Download Now
Based on the author’s 20 years of teaching, Risk Analysis in Engineering: Techniques, Tools, and Trends presents an engineering approach to probabilistic risk analysis (PRA). It emphasizes methods for comprehensive PRA studies, including techniques for risk management. The author assumes little or no prior knowledge of risk analysis on the part of the student and provides the necessary mathematical and engineering foundations. The text relies heavily on, but is not limited to, examples from the nuclear industry, because that is where PRA techniques were first developed. Since PRA provides a best-estimate approach, the author pays special attention to explaining uncertainty characterization. The book begins with a description of the basic definitions and principles of risk, safety, and performance and presents the elements of risk analysis and their applications in engineering. After highlighting the methods for performing PRAs, the author describes how to assess and measure performance of the building blocks of PRAs, such as reliability of hardware subsystems, structures, components, human actions, and software. He covers methods of characterizing uncertainties and methods for propagating them through the PRA model to estimate uncertainties of the results. The book explores how to identify and rank important and sensitive contributors to the estimated risk using the PRA and performance assessment models. It also includes a description of risk acceptance criteria and the formal methods for making decisions related to risk management options and strategies. The book concludes with a brief review of the main aspects, issues, and methods of risk communication. Drawing on notes, homework problems, and exams from courses he has taught as well as feedback from his students, Professor Modarres provides a from-the-trenches method for teaching risk assessment for engineers. This is a textbook that is easy to use for students and professors alike.

Applied Reliability and Quality

Author: Balbir S. Dhillon
Publisher: Springer Science & Business Media
ISBN: 1846284988
Format: PDF, Docs
Download Now
Each industry, from robotics to health care, power generation to software, has its own tailored reliability and quality principles, methods, and procedures. This book brings these together so that reliability and quality professionals can more easily learn about each other's work, which may help them, directly or indirectly, to perform their tasks more effectively.

Human Factors and Reliability Engineering for Safety and Security in Critical Infrastructures

Author: Fabio De Felice
Publisher: Springer
ISBN: 3319623192
Format: PDF, Kindle
Download Now
This book collects a high-quality selection of contemporary research and case studies on the complexity resulting from human/reliability management in industrial plants and critical infrastructures. It includes: Human-error management issues—considering how to reduce human errors as much as possible. Reliability management issues—considering the ability of a system or component to function under certain conditions for a specified period of time. Thus, the book analyses globally the problem regarding the human and reliability management to reduce human errors as much as possible and to ensure safety and security in critical infrastructures. Accidents continue to be the major concern in “critical infrastructures”, and human factors have been proved to be the prime causes to accidents. Clearly, human dynamics are a challenging management function to guarantee reliability, safety and costs reduction in critical infrastructures. The book is enriched by figures, examples and extensive case studies and is a valuable reference resource for those with involved in disaster and emergency planning as well as researchers interested both in theoretical and practical aspects.