Beyond the Standard Model of Elementary Particle Physics

Author: Yorikiyo Nagashima
Publisher: John Wiley & Sons
ISBN: 3527665048
Format: PDF, ePub
Download Now
A unique and comprehensive presentation on modern particle physics which stores the background knowledge on the big open questions beyond the standard model, as the existence of the Higgs-boson, or the nature of Dark Matter and Dark Energy.

Particle Physics beyond the Standard Model

Author:
Publisher: Elsevier
ISBN: 9780080463148
Format: PDF, ePub
Download Now
The Standard Model of elementary particles and interactions is one of the best tested theories in physics. It has been found to be in remarkable agreement with experiment, and its validity at the quantum level has been successfully probed in the electroweak sector. In spite of its experimental successes, though, the Standard Model suffers from a number of limitations, and is likely to be an incomplete theory. It contains many arbitrary parameters; it does not include gravity, the fourth elementary interaction; it does not provide an explanation for the hierarchy between the scale of electroweak interactions and the Planck scale, characteristic of gravitational interactions; and finally, it fails to account for the dark matter and the baryon asymmetry of the universe. This led particle theorists to develop and study various extensions of the Standard Model, such as supersymmetric theories, Grand Unified Theories or theories with extra space-time dimensions - most of which have been proposed well before the experimental verification of the Standard Model. The coming generation of experimental facilities (such as high-energy colliders, B-physics experiments, neutrino superbeams, as well as astrophysical and cosmological observational facilities) will allow us to test the predictions of these theories and to deepen our understanding of the fundamental laws of nature. This book is a collection of lectures given in August 2005 at the Les Houches Summer School on Particle Physics beyond the Standard Model. It provides a pedagogical introduction to the various aspects of particle physics beyond the Standard Model, covering each topic from the basics to the most recent developments: supersymmetric theories, Grand Unified Theories, theories with extra dimensions, flavour physics and CP violation, neutrino physics, astroparticle physics and cosmology. · Provides a pedagogical introduction to particle physics beyond the Standard Model · Covers the various aspects of particle physics beyond the Standard Model · Addresses each topic from the basics to the most recent developments · Addresses both the theoretical and phenomenological aspects of the subject · Written in a pedagogical style by leading experts in the field

Journeys Beyond The Standard Model

Author: Pierre Ramond
Publisher: Westview Press
ISBN: 9780813341316
Format: PDF, Mobi
Download Now
This book should be at the side of every particle and nuclear physics graduate student and professional. Journeys Beyond the Standard Model starts with a detailed and modern account of the Standard Model of elementary particle physics, the paradigm of particle physics for the last twenty years. Its timely release coincides with the recent dramatic discovery that the neutrino has a finite mass, which is the first indication that the Standard Model is an incomplete description of fundamental physics at short distances. This book presents in detail three possible generalizations of the Standard Model: its extension to accommodate neutrino masses; its extension to avoid CP violation in the strong interactions by introducing a new particle, the axion; and finally, its generalization to low-energy supersymmetry, which provides a link between the standard model and Einstein's theory of general relativity.This graduate text complements the author's previous book, Modern Field Theory: A Primer, which focuses on the methodology of particle physics. Its aim is to give students and professional physicists alike a thorough understanding of the phenomena described by the Standard Model, while keeping track of the most recent and cutting-edge principles of elementary particle physics.

Modern Elementary Particle Physics

Author: Gordon Kane
Publisher: Cambridge University Press
ISBN: 1107165083
Format: PDF
Download Now
This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.

The Standard Model and Beyond

Author: J D Vergados
Publisher: World Scientific Publishing Company
ISBN: 9813228571
Format: PDF, ePub, Mobi
Download Now
This book contains a systematic and pedagogical exposition of recent developments in particle physics and cosmology. It starts with two introductory chapters on group theory and the Dirac theory. Then it proceeds with the formulation of the Standard Model (SM) of Particle Physics, particle content and symmetries, fully exploiting the material of the first two chapters. It discusses the concept of gauge symmetries and emphasizes their role in particle physics. It then analyses the Higgs mechanism and the spontaneous symmetry breaking (SSB). It explains how the particles (gauge bosons and fermions) after the SSB acquire a mass and get admixed. The various forms of the charged currents are discussed in detail as well as how the parameters of the SM, which cannot be determined by the theory, are fixed by experiment, including the recent LHC data and the Higgs discovery. Quantum chromodynamics is discussed and various low energy approximations to it are presented. The Feynman diagrams are introduced and applied, at the level of first year graduate students. Examples are the evaluation of the decay widths of the gauge bosons and some cross sections for interesting processes such as Rutherford scattering, electron-proton scattering (elementary proton or described by a form factor, and inelastic scattering) and Compton scattering. After that the classic topics like the role of C, P, CP symmetries and the experimental methods needed to verify their conservation or violation are discussed in some detail. Topics beyond the standard model, like supersymmetry for pedestrians and grand unification, are discussed. To this end neutrino oscillations, dark matter and baryon asymmetry are also briefly discussed at the first year graduate level. Finally, the book contains an exhibition of recent developments in cosmology, especially from the elementary particle point of view. Contents: Mathematical Prerequisite A: Elements of Group TheoryMathematical Prerequisite B: The Dirac TheoryThe Standard Model: Particle Content and SymmetryThe Higgs MechanismFermion Masses and CurrentsThe SM SU(3) Group; Quantum ChromodynamicsRates and Cross Sections in Electroweak TheorySupersymmetry for PedestriansGrand Unification; The SU(5) ExampleA Brief Introduction to CosmologyAspects of Neutrino Physics; Neutrino OscillationsDiscrete Symmetries: C, P, T and All ThatAppendix: Some Elementary Aspects of Particle Physics Readership: Advanced undergraduates and beginning graduates studying particle or astroparticle physics.

Ein Universum aus Nichts

Author: Lawrence M. Krauss
Publisher: Albrecht Knaus Verlag
ISBN: 3641091144
Format: PDF
Download Now
Eine Reise zu den Ursprüngen unseres Universums Warum gibt es alles und nicht nichts? Worüber sich Philosophen seit Jahrhunderten den Kopf zerbrechen, darauf weiß die Physik Antwort: Nach den neuesten Erkenntnissen kann durchaus alles aus dem Nichts entstanden sein. Und mit Lawrence Krauss ist das gar nicht so schwer zu verstehen. Ironisch, böse und zugleich mit einem Augenzwinkern weiß Krauss selbst die Erkenntnis, dass wir aller Wahrscheinlichkeit nach auch im Nichts verschwinden werden, höchst amüsant zu präsentieren, und schont dabei niemanden: weder Philosophen noch Theologen noch sich selbst. Die Frage nach der Entstehung unseres Universums ist eine der bemerkenswertesten Erkundungsreisen, die die Menschheit je unternommen hat. Einstein, Hubble, Relativitätstheorie, Inflation und Quantenmechanik – kein Bereich der Kosmologie, über den Lawrence Krauss nicht verständlich und vor allem spannend zu erzählen weiß. Dabei fragt er immer auch nach den Quellen unseres Wissens: Wie hat sich unsere Vorstellung vom Ursprung aller Dinge entwickelt? Weshalb wissen wir, was wir heute wissen? Und warum können wir davon ausgehen, dass das auch stimmt? Mit Ein Universum aus Nichts hat er ein Buch geschrieben, das schlau macht – voller Seitenhiebe gegen die theologische Zunft und alle anderen esoterischen Welterklärungen. Ganz ohne Berechnungen.

The Physics of the Standard Model and Beyond

Author: T. Morii
Publisher: World Scientific
ISBN: 9789812795601
Format: PDF, ePub
Download Now
This book provides a unified description of elementary particle interactions and the underlying theories, namely the Standard Model and beyond. The authors have aimed at a concise presentation but have taken care that all the basic concepts are clearly described. Written primarily for graduate students in theoretical and experimental particle physics, The Physics of the Standard Model and Beyond conveys the excitement of particle physics, centering upon experimental observations (new and old) and a variety of ideas for their interpretation. Contents: Weak Interaction; Symmetries and the Gauge Theories; The Standard Model of Electroweak Interactions; Quantum Chromodynamics; Neutrino Masses and Neutrino Oscillations; Supersymmetry; Precision Test of Electroweak Radiative Corrections and New Physics; Flavor Physics and CP Violation; Appendices: Notation and Useful Relations; Cross Sections and Feynman Rule; Basics of the Group Theory; C, P and T Transformation; The Quark Model. Readership: Graduate students, experimentalists and theorists in high energy physics.

An Introduction to Particle Physics and the Standard Model

Author: Robert Mann
Publisher: CRC Press
ISBN: 1420083007
Format: PDF, ePub
Download Now
An Introduction to the Standard Model of Particle Physics familiarizes readers with what is considered tested and accepted and in so doing, gives them a grounding in particle physics in general. Whenever possible, Dr. Mann takes an historical approach showing how the model is linked to the physics that most of us have learned in less challenging areas. Dr. Mann reviews special relativity and classical mechanics, symmetries, conservation laws, and particle classification; then working from the tested paradigm of the model itself, he: Describes the Standard Model in terms of its electromagnetic, strong, and weak components Explores the experimental tools and methods of particle physics Introduces Feynman diagrams, wave equations, and gauge invariance, building up to the theory of Quantum Electrodynamics Describes the theories of the Strong and Electroweak interactions Uncovers frontier areas and explores what might lie beyond our current concepts of the subatomic world Those who work through the material will develop a solid command of the basics of particle physics. The book does require a knowledge of special relativity, quantum mechanics, and electromagnetism, but most importantly it requires a hunger to understand at the most fundamental level: why things exist and how it is that anything happens. This book will prepare students and others for further study, but most importantly it will prepare them to open their minds to the mysteries that lie ahead. Ultimately, the Large Hadron Collider may prove the model correct, helping so many realize their greatest dreams ... or it might poke holes in the model, leaving us to wonder an even more exciting possibility: that the answers lie in possibilities so unique that we have not even dreamt of them.

From the Universe to the Elementary Particles

Author: Ulrich Ellwanger
Publisher: Springer Science & Business Media
ISBN: 3642243754
Format: PDF, Kindle
Download Now
In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is required, the book is also suitable for college and university students at the beginning of their studies. Hobby astronomers and other science enthusiasts seeking a deeper insight than can be found in popular treatments will also appreciate this unique book.

Introduction to Elementary Particle Physics

Author: Alessandro Bettini
Publisher: Cambridge University Press
ISBN: 1107050405
Format: PDF, ePub, Docs
Download Now
Provides fully updated coverage of undergraduate particle physics, including the Higgs boson discovery, with an emphasis on physics over mathematics.