Bioinspired Photonics

Author: Viktoria Greanya
Publisher: CRC Press
ISBN: 146650403X
Format: PDF, Mobi
Download Now
Harness the Wonders of the Natural World As our in-depth knowledge of biological systems increases, the number of devices and applications built from these principles is rapidly growing. Bioinspired Photonics: Optical Structures and Systems Inspired by Nature provides an interdisciplinary introduction to the captivating and diverse photonic systems seen in nature and explores how we take inspiration from them to create new photonic materials and devices. See How Photonic Systems in Nature Work The book presents important examples of how combining biological inspiration with state-of-the-art nanoscience is resulting in the emergence of a field focused on developing real improvements in materials and devices. The author walks readers through examples taken from nature, delves into their characterization and performance, and describes the unique features of their performance. She interweaves this material with discussions on fabricating synthetic versions of the systems as well as specific aspects of the biological examples that researchers are leveraging in their own work. Replicate and Take Inspiration from These Systems for Fabrication and Application Suitable for a multidisciplinary audience of scientists, technologists, students, and lay people, this book covers a wide range of topics encompassed by bioinspired photonics in an easy-to-follow way. Newcomers to the field will acquire the minimum background necessary to begin exploring this fascinating subject while experts will discover state-of-the-art approaches to biomimetic and bioinspired photonic systems.

Knowledge Visualization and Visual Literacy in Science Education

Author: Ursyn, Anna
Publisher: IGI Global
ISBN: 1522504818
Format: PDF, Docs
Download Now
Effective communication within learning environments is a pivotal aspect to students’ success. By enhancing abstract concepts with visual media, students can achieve a higher level of retention and better understand the presented information. Knowledge Visualization and Visual Literacy in Science Education is an authoritative reference source for the latest scholarly research on the implementation of visual images, aids, and graphics in classroom settings and focuses on how these methods stimulate critical thinking in students. Highlighting concepts relating to cognition, communication, and computing, this book is ideally designed for researchers, instructors, academicians, and students.

Biomimetic and Bioinspired Nanomaterials

Author: Challa S. S. R. Kumar
Publisher: John Wiley & Sons
ISBN: 3527321675
Format: PDF, Docs
Download Now
These ten volumes provide an excellent, in-depth overview of all nanomaterial types and their uses in the life sciences. Each volume is dedicated to a specific material class and covers fundamentals, synthesis strategies, structure-property relationships, material behaviour finetuning, biological effects and applications in the life sciences. All important material classes are covered: metallic, metal oxide, magnetic, carbon, polymeric, composite and semiconducting nanomaterials as well as nanostructured surfaces and films. It serves as a major reference work in the field that brings together pertinent knowledge formerly widely spread out over many different sources.

Nanophotonics

Author: Paras N. Prasad
Publisher: John Wiley & Sons
ISBN: 9780471670247
Format: PDF, ePub, Docs
Download Now
The only comprehensive treatment of nanophotonics currentlyavailable Photonics is an all-encompassing optical science and technologywhich has impacted a diverse range of fields, from informationtechnology to health care. Nanophotonics is photonic science andtechnology that utilizes light-matter interactions on thenanoscale, where researchers are discovering new phenomena anddeveloping technologies that go well beyond what is possible withconventional photonics and electronics. These new technologiescould include efficient solar power generation, high-bandwidth andhigh-speed communications, high-capacity data storage, andflexible- and high-contrast displays. In addition, nanophotonicswill continue to impact biomedical technologies by providing newand powerful diagnostic techniques, as well as light-guided andactivated therapies. Nanophotonics provides the only available comprehensive treatmentof this exciting, multidisciplinary field, offering a wide range oftopics covering: * Foundations * Materials * Applications * Theory * Fabrication Nanophotonics introduces students to important and timely conceptsand provides scientists and engineers with a cutting-edgereference. The book is intended for anyone who wishes to learnabout light-matter interactions on the nanoscale, as well asapplications of photonics for nanotechnology and nanobiotechnology.Written by an acknowledged leader in the field, this text providesan essential resource for those interested in the future ofmaterials science and engineering, nanotechnology, and photonics.

Robotics Advances in Research and Application 2013 Edition

Author:
Publisher: ScholarlyEditions
ISBN: 1481692186
Format: PDF
Download Now
Robotics—Advances in Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Autonomous Robotics. The editors have built Robotics—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Autonomous Robotics in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Robotics—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Engineered Biomimicry

Author: Akhlesh Lakhtakia
Publisher: Newnes
ISBN: 0123914329
Format: PDF, Mobi
Download Now
Engineered Biomimicry covers a broad range of research topics in the emerging discipline of biomimicry. Biologically inspired science and technology, using the principles of math and physics, has led to the development of products as ubiquitous as VelcroTM (modeled after the spiny hooks on plant seeds and fruits). Readers will learn to take ideas and concepts like this from nature, implement them in research, and understand and explain diverse phenomena and their related functions. From bioinspired computing and medical products to biomimetic applications like artificial muscles, MEMS, textiles and vision sensors, Engineered Biomimicry explores a wide range of technologies informed by living natural systems. Engineered Biomimicry helps physicists, engineers and material scientists seek solutions in nature to the most pressing technical problems of our times, while providing a solid understanding of the important role of biophysics. Some physical applications include adhesion superhydrophobicity and self-cleaning, structural coloration, photonic devices, biomaterials and composite materials, sensor systems, robotics and locomotion, and ultra-lightweight structures. Explores biomimicry, a fast-growing, cross-disciplinary field in which researchers study biological activities in nature to make critical advancements in science and engineering Introduces bioinspiration, biomimetics, and bioreplication, and provides biological background and practical applications for each Cutting-edge topics include bio-inspired robotics, microflyers, surface modification and more

Biomimetics in Photonics

Author: Olaf Karthaus
Publisher: CRC Press
ISBN: 1439877467
Format: PDF, Mobi
Download Now
Biomimetic photonics is a burgeoning field. Biologists are finding and describing a whole menagerie of unique and astonishingly complex nano- and microstructures in fauna and flora. Material scientists are developing novel multifunctional and hierarchical structures with a wide variety of post-nano era photonics applications. Mathematicians and computer scientists are using computer models and simulations to understand the underlying principles of biomimetic structures. However, concepts, structures, and phenomena that are well known in one community are quite unknown in others. Exploring a biomimetic approach to developing photonic devices and structures, Biomimetics in Photonics discusses not only the role of and results of biomimicry in engineering, but also the true understanding of natural processes and the application of these techniques to established technologies. Featured Topics Photonic structures in flowers, leaves and fruits and inorganic structures produced in aquatic environment by diatoms, sponges, and shells Mechanisms for biomineralization and how natural structures can be synthetically modified or even used as templates for artificial photonic materials Biological photonic structures in beetles and butterflies and their bio-inspired applications, including anti-reflecting surfaces, iridescent viruses, light reflection, metallic effects, and infrared sensors Suitable for researchers and graduate students, the book does more than describe how to extract good design from nature—Biomimetics in Photonics highlights natural design techniques in context, allowing for a more complete modeling picture. It demonstrates the possibilities and challenges in the move from a laboratory environment to industrial scale production of biomimetic photonic structures.

Optical Biomimetics

Author: Maryanne Large
Publisher: Elsevier
ISBN: 0857097652
Format: PDF, Docs
Download Now
Optical biomimetics, the study of natural systems to inspire novel solutions to problems in optical technologies, has attracted growing interest. Optical biomimetics reviews key research in this area, focusing on the techniques and approaches used to characterise and mimic naturally occurring optical effects. Beginning with an overview of natural photonic structures, Optical biomimetics goes on to discuss optical applications of biomolecules, such as retinylidene and bacteriorhodopsin, polarisation effects in natural photonic structures and their applications, and biomimetic nanostructures for anti-reflection (AR) devices. Control of iridescence in natural photonic structures is explored through the case of butterfly scales, alongside a consideration of nanostructure fabrication using natural synthesis. The investigation into silk optical materials is followed by a final discussion of the control of florescence in natural photonic structures. With its distinguished editor and international team of expert contributors, Optical biomimetics is a valuable guide for scientists and engineers in both academia and industry who are already studying biomimetics, and a fascinating introduction for those who wish to move into this interesting new field. Reviews key research in optical biomimetics, focusing on the techniques and approaches used to characterise and mimic naturally-occurring optical effects Discusses optical applications of biomolecules, such as retinylidene and bacteriorhodopsin Explores the control of iridescence in natural photonic structures through the case of butterfly scales

Biological and bioinspired materials and devices

Author: Joanna Aizenberg
Publisher:
ISBN:
Format: PDF, ePub, Docs
Download Now
The special interest afforded biological and bioinspired materials and devices lies in the fact that many biological materials, as diverse as bone and teeth and spider silk, have highly refined and sophisticated platforms of structure that are well organized at hierarchical levels spanning nanoscale to microscale measures. There is absolutely strict and precise control of materials synthesis exerted by these natural systems, and vigorous study and advancement in the fields of biomineralization, molecular biology, and DNA technology, for instance, have brought increasing understanding of such control in ever expanding fashion. This knowledge has been quickly transferred into the design and development of synthetic materials that mimic their biological counterparts. In this context, an explosion in research in the past few years has centered on the identification and synthesis of 1) unique ceramics or composites for biomaterials, magnetic and optical use, 2) self-assembled biopolymeric systems for biomaterials and biosensor application, and 3) colloidal and amphiphilic systems for relevance in biomedicine, nanotechnology, and biosensor fabrication. Therefore, new nanocrystalline composites, nanofibers, biosteel fibers, novel biosensors, distinctive drug-delivery systems, exceptional tissue engineering scaffolds, exclusive molecular imprinting matrices, and innovative photonic crystals are suddenly available. Given this backdrop, the papers in this volume involve biology, medicine, engineering, physics, chemistry, and materials science. Topics include biomineralization and the structure and mechanical, magnetic, and optical properties of biominerals; implant materials for dental, maxillofacial, orthopaedic, urological, and ophthalmic applications; tissue adhesives and cements; material degradation and implant failure; organic modification of surfaces and their biocompatibility; tissue engineering with cells and scaffolding to generate extracellular matrices for tissue regeneration; emerging technologies in tissue engineering, including application of stem cells and gene therapy; in situ and ex situ characterization techniques and imaging of biomaterials; pharmaceutical crystallization and materials for drug and gene delivery; supramolecular and biological self assembly; and structure and dynamics of organic/inorganic interfaces.