Semiconductor Materials

Author: Lev I. Berger
Publisher: CRC Press
ISBN: 9780849389122
Format: PDF, ePub, Mobi
Download Now
Semiconductor Materials presents physico-chemical, electronic, electrical, elastic, mechanical, magnetic, optical, and other properties of a vast group of elemental, binary, and ternary inorganic semiconductors and their solid solutions. It also discusses the properties of organic semiconductors. Descriptions are given of the most commonly used semiconductor devices-charge-coupled devices, field-effect transistors, unijunction transistors, thyristors, Zener and avalanche diodes, and photodiodes and lasers. The current trend of transitioning from silicon technology to gallium arsenide technology in field-effect-based electronic devices is a special feature that is also covered. More than 300 figures and 100 tables highlight discussions in the text, and more than 2,000 references guide you to further sources on specific topics. Semiconductor Materials is a relatively compact book containing vast information on semiconductor material properties. Readers can compare results of the property measurements that have been reported by different authors and critically compare the data using the reference information contained in the book. Engineers who design and improve semiconductor devices, researchers in physics and chemistry, and students of materials science and electronics will find this a valuable guide.

Semiconductor Wafer Bonding 11 Science Technology and Applications In Honor of Ulrich G sele

Author: C. Colinge
Publisher: The Electrochemical Society
ISBN: 1566778239
Format: PDF, Mobi
Download Now
Semiconductor wafer bonding continues to evolve as a crucial technology extending new integration schemes and disseminating new product architectures in such diverse areas as high quality silicon-on-insulator (SOI) materials for electronic applications, Si-Ge strained layers, Germanium-on-Insulator (GeOI), 3D device integration, Si on quartz or glass for thin film displays, compound semiconductor-on-Si heterostructures and Micro-Electro-Mechanical Systems.

The Materials Science of Semiconductors

Author: Angus Rockett
Publisher: Springer Science & Business Media
ISBN: 0387686509
Format: PDF, ePub
Download Now
This book describes semiconductors from a materials science perspective rather than from condensed matter physics or electrical engineering viewpoints. It includes discussion of current approaches to organic materials for electronic devices. It further describes the fundamental aspects of thin film nucleation and growth, and the most common physical and chemical vapor deposition techniques. Examples of the application of the concepts in each chapter to specific problems or situations are included, along with recommended readings and homework problems.

Academic Press Dictionary of Science and Technology

Author: Christopher G. Morris
Publisher: Gulf Professional Publishing
ISBN: 9780122004001
Format: PDF
Download Now
Over 125,000 entries cover 124 scientific and technological fields, including acoustical engineering, cartography graphic arts, microbiology, organic chemistry, radiology, and zoology

Engineering Materials Science

Author: Milton Ohring
Publisher: Elsevier
ISBN: 9780080505695
Format: PDF, ePub
Download Now
Milton Ohring's Engineering Materials Science integrates the scientific nature and modern applications of all classes of engineering materials. This comprehensive, introductory textbook will provide undergraduate engineering students with the fundamental background needed to understand the science of structure-property relationships, as well as address the engineering concerns of materials selection in design, processing materials into useful products, andhow material degrade and fail in service. Specific topics include: physical and electronic structure; thermodynamics and kinetics; processing; mechanical, electrical, magnetic, and optical properties; degradation; and failure and reliability. The book offers superior coverage of electrical, optical, and magnetic materials than competing text. The author has taught introductory courses in material science and engineering both in academia and industry (AT&T Bell Laboratories) and has also written the well-received book, The Material Science of Thin Films (Academic Press). Key Features * Provides a modern treatment of materials exposing the interrelated themes of structure, properties, processing, and performance * Includes an interactive, computationally oriented, computer disk containing nine modules dealing with structure, phase diagrams, diffusion, and mechanical and electronic properties * Fundamentals are stressed * Of particular interest to students, researchers, and professionals in the field of electronic engineering

Wide band gap Semiconductors

Author: C.G. Van de Walle
Publisher: Elsevier
ISBN: 0444599177
Format: PDF, ePub
Download Now
Wide-band-gap semiconductors have been a research topic for many decades. However, it is only in recent years that the promise for technological applications came to be realized; simultaneously an upsurge of experimental and theoretical activity in the field has been witnessed. Semiconductors with wide band gaps exhibit unique electronic and optical properties. Their low intrinsic carrier concentrations and high breakdown voltage allow high-temperature and high-power applications (diamond, SiC etc.). The short wavelength of band-to-band transitions allows emission in the green, blue, or even UV region of the spectrum (ZnSe, GaN, etc.). In addition, many of these materials have favorable mechanical and thermal characteristics. These proceedings reflect the exciting progress made in this field. Successful p-type doping of ZnSe has recently led to the fabrication of blue-green injection lasers in ZnSe; applications of short-wavelength light-emitting devices range from color displays to optical storage. In SiC, advances in growth techniques for bulk as well as epitaxial material have made the commercial production of high-temperature and high-frequency devices possible. For GaN, refinement of growth procedures and new ways of obtaining doped material have resulted in blue-light-emitting diodes and opened the road to the development of laser diodes. Finally, while the quality of artificial diamond is not yet high enough for electronic applications, the promise it holds in terms of unique material properties is encouraging intense activity in the field. This volume contains contributions from recognized experts presently working on different material systems in the field. The papers cover the theoretical, experimental and application-oriented aspects of this exciting topic.

The Physics of Semiconductors

Author: Marius Grundmann
Publisher: Springer Science & Business Media
ISBN: 9783642138843
Format: PDF, Docs
Download Now
Semiconductorelectronicsiscommonplaceineveryhousehold.Semiconductor deviceshavealsoenabledeconomicallyreasonable?ber-basedopticalcom- nication, optical storage and high-frequency ampli?cation and have recently revolutionizedphotography,displaytechnologyandlighting.Alongwiththese tremendous technological developments, semiconductors have changed the way we work, communicate, entertain and think. The technological progress of semiconductor materials and devices is evolving continuously with a large worldwide e?ort in human and monetary capital. For students, semicond- tors o?er a rich, diverse and exciting ?eld with a great tradition and a bright future. This book introduces students to semiconductor physics and semicond- tor devices. It brings them to the point where they can specialize and enter supervisedlaboratoryresearch.Itisbasedonthetwosemestersemiconductor physics course taught at Universit ̈ at Leipzig in its Master of Science physics curriculum. Since the book can be followed with little or no pre-existing knowledge in solid-state physics and quantum mechanics, it is also suitable for undergraduate students. For the interested reader some additional topics are included in the book that can be covered in subsequent, more speci- ized courses. The material is selected to provide a balance between aspects of solid-state and semiconductor physics, the concepts of various semiconductor devices and modern applications in electronics and photonics.