Building Electro Optical Systems

Author: Philip C. D. Hobbs
Publisher: John Wiley & Sons
ISBN: 111821109X
Format: PDF, ePub, Docs
Download Now
Praise for the First Edition "Now a new laboratory bible for optics researchers has joined the list: it is Phil Hobbs's Building Electro-Optical Systems: Making It All Work." —Tony Siegman, Optics & Photonics News Building a modern electro-optical instrument may be the most interdisciplinary job in all of engineering. Be it a DVD player or a laboratory one-off, it involves physics, electrical engineering, optical engineering, and computer science interacting in complex ways. This book will help all kinds of technical people sort through the complexity and build electro-optical systems that just work, with maximum insight and minimum trial and error. Written in an engaging and conversational style, this Second Edition has been updated and expanded over the previous edition to reflect technical advances and a great many conversations with working designers. Key features of this new edition include: Expanded coverage of detectors, lasers, photon budgets, signal processing scheme planning, and front ends Coverage of everything from basic theory and measurement principles to design debugging and integration of optical and electronic systems Supplementary material is available on an ftp site, including an additional chapter on thermal Control and Chapter problems highly relevant to real-world design Extensive coverage of high performance optical detection and laser noise cancellation Each chapter is full of useful lore from the author's years of experience building advanced instruments. For more background, an appendix lists 100 good books in all relevant areas, introductory as well as advanced. Building Electro-Optical Systems: Making It All Work, Second Edition is essential reading for researchers, students, and professionals who have systems to build.

Building Electro Optical Systems

Author: Philip C. D. Hobbs
Publisher: John Wiley and Sons
ISBN: 9780470466322
Format: PDF, ePub
Download Now
Praise for the First Edition "Now a new laboratory bible for optics researchers has joined the list: it is Phil Hobbs's Building Electro-Optical Systems: Making It All Work." —Tony Siegman, Optics & Photonics News Building a modern electro-optical instrument may be the most interdisciplinary job in all of engineering. Be it a DVD player or a laboratory one-off, it involves physics, electrical engineering, optical engineering, and computer science interacting in complex ways. This book will help all kinds of technical people sort through the complexity and build electro-optical systems that just work, with maximum insight and minimum trial and error. Written in an engaging and conversational style, this Second Edition has been updated and expanded over the previous edition to reflect technical advances and a great many conversations with working designers. Key features of this new edition include: Expanded coverage of detectors, lasers, photon budgets, signal processing scheme planning, and front ends Coverage of everything from basic theory and measurement principles to design debugging and integration of optical and electronic systems Supplementary material is available on an ftp site, including an additional chapter on thermal Control and Chapter problems highly relevant to real-world design Extensive coverage of high performance optical detection and laser noise cancellation Each chapter is full of useful lore from the author's years of experience building advanced instruments. For more background, an appendix lists 100 good books in all relevant areas, introductory as well as advanced. Building Electro-Optical Systems: Making It All Work, Second Edition is essential reading for researchers, students, and professionals who have systems to build.

Building Electro Optical Systems

Author: Philip C. D. Hobbs
Publisher: Wiley
ISBN: 0470466324
Format: PDF
Download Now
Praise for the First Edition "Now a new laboratory bible for optics researchers has joined the list: it is Phil Hobbs's Building Electro-Optical Systems: Making It All Work." —Tony Siegman, Optics & Photonics News Building a modern electro-optical instrument may be the most interdisciplinary job in all of engineering. Be it a DVD player or a laboratory one-off, it involves physics, electrical engineering, optical engineering, and computer science interacting in complex ways. This book will help all kinds of technical people sort through the complexity and build electro-optical systems that just work, with maximum insight and minimum trial and error. Written in an engaging and conversational style, this Second Edition has been updated and expanded over the previous edition to reflect technical advances and a great many conversations with working designers. Key features of this new edition include: Expanded coverage of detectors, lasers, photon budgets, signal processing scheme planning, and front ends Coverage of everything from basic theory and measurement principles to design debugging and integration of optical and electronic systems Supplementary material is available on an ftp site, including an additional chapter on thermal Control and Chapter problems highly relevant to real-world design Extensive coverage of high performance optical detection and laser noise cancellation Each chapter is full of useful lore from the author's years of experience building advanced instruments. For more background, an appendix lists 100 good books in all relevant areas, introductory as well as advanced. Building Electro-Optical Systems: Making It All Work, Second Edition is essential reading for researchers, students, and professionals who have systems to build.

Building Electro Optical Systems

Author: Philip C. D. Hobbs
Publisher: Wiley-Interscience
ISBN: 9780471246817
Format: PDF, Docs
Download Now
While most books on electro-optical systems concentrate on an individual subfield, this one presents an overview of the whole field, providing researchers with working knowledge of a number of cross-disciplinary areas. It includes essential information on how to build modern electro-optical instruments such as microscopes, cameras, optical inspection equipment, and spectrometers, and optical-related computer equipment.

Building Scientific Apparatus

Author: John H. Moore
Publisher: Cambridge University Press
ISBN: 0521878586
Format: PDF, ePub
Download Now
Unrivalled in its coverage and unique in its hands-on approach, this guide to the design and construction of scientific apparatus is essential reading for every scientist and student of engineering, and physical, chemical, and biological sciences. Covering the physical principles governing the operation of the mechanical, optical and electronic parts of an instrument, new sections on detectors, low-temperature measurements, high-pressure apparatus, and updated engineering specifications, as well as 400 figures and tables, have been added to this edition. Data on the properties of materials and components used by manufacturers are included. Mechanical, optical, and electronic construction techniques carried out in the lab, as well as those let out to specialized shops, are also described. Step-by-step instruction supported by many detailed figures, is given for laboratory skills such as soldering electrical components, glassblowing, brazing, and polishing.

Applied Electro Optics

Author: Louis Desmarais
Publisher: Pearson Education
ISBN: 0132441829
Format: PDF, ePub, Mobi
Download Now
A "back-to-basics" guide to opto-electronic circuit design and construction. To successfully build and optimize opto-electronic circuits, you need to understand both the fundamentals of optics and electronics. Applied Electro-Optics provides engineers, designers and technicians with a firm background in both optical physics and circuit design. In Part I, the book introduces the basic theory of opto-electronics, including: Maxwell's equations and the wave nature of light Reflection and refraction, with extensive coverage of Snell's Law Interference phenomena and the Fabry-Perot interferometer Diffraction effects and diffraction gratings Polarization and electro-optic modulation Photons, basic quantum theory, and spectroscopic techniques Then, in Part II, the book introduces each major element of an electro-optic system. Understand semiconductor light sources such as LEDs and diode lasers. Consider optical transmitters and discover how to minimize the impact of electromagnetic interference through careful circuit location, grounding, and shielding. Review the basic structure and operation of photodiodes, phototransistors, optocouplers, and photoconductors. Then, learn practical techniques for managing the trade-offs required to integrate these devices into useful circuits. A full chapter on optical receivers demonstrates how to integrate photodetectors into useful receiver circuits; both amplifier and hybrid circuits are covered. Finally, walk step-by-step through building and optimizing circuits for a variety of applications, including CD players and infrared data transmission. If your goal is to build the best possible opto-electronic circuits or just to understand how they operate, Applied Electro-Optics delivers just the right balance of theory and practice to help you.

Photodetection and Measurement

Author: Mark Johnson
Publisher: McGraw Hill Professional
ISBN: 0071433481
Format: PDF, ePub, Docs
Download Now
MAKE OPTICAL MEASUREMENTS WITH MAXIMUM ACCURACY AND MINIMUM COST The "opto-electronics revolution" has made the art and science of making sensitive, accurate, and inexpensive optical measurements must-know information for legions of electronic engineers and research students. And there’s no faster or easier way to master photodetection and measurement techniques than with this hands-on tutorial written by a teacher with experience enough to know the questions you would ask. A clear, easy-to-understand "rules-of-thumb" approach shows you how to make high-performance optical measurements by getting the fundamentals right, often with simple, inexpensive equipment commonly found in laboratories. It includes treatment of: * Photodetectors * Amplifiers * LED sources * Electronic modulation and demodulation * Interference avoidance * Data acquisition and basic DSP You’ll also gain a firm understanding of noise-reduction techniques and the essentials of building-in speed, sensitivity,and stability. If you want to learn the secret of making sound optical measurements without expensive equipment, this is the one resource you shouldn’t work without.

Optical Communications Rules of Thumb

Author: John Lester Miller
Publisher: McGraw Hill Professional
ISBN: 0071500901
Format: PDF, ePub, Mobi
Download Now
This engineering tool provides over 200 time and cost saving rules of thumb--short cuts, tricks, and methods that optical communications veterans have developed through long years of trial and error. * DWDM (Dense Wavelength Division Multiplexing) and SONET (Synchronous Optical NETwork) rules * Information Transmission, fiber optics, and systems rules

Photodiode Amplifiers OP AMP Solutions

Author: Jerald G. Graeme
Publisher: McGraw Hill Professional
ISBN: 9780070242470
Format: PDF, Docs
Download Now
No matter where you are on the learning curve, this one-stop sourcebook delivers the kind of previously hard-to-find practical information you'll appreciate - and the wide range of application circuit alternatives you need - to optimize the noise, offset, bandwidth, and stability performance of photodiode amplifiers. Featuring the insights and accumulated knowledge that could only come from the world's number one authority on the subject, this is no scholarly tome but a hands-on reference - one that provides you with generalized circuit solutions that quickly adapt to specific design and application requirements. Inside, you'll find clear, complete, and largely stand-alone discussions of such topics as how the op amp current-to-voltage converter serves as the basic photodiode amplifier; the role of photodiode capacitance in an amplifier's AC response, along with design equations for optimum phase compensation; noise analysis, identification, and reduction; and wideband, high-gain, and position-sensing photodiode amplifiers. In all, this information-packed guide is without question the photodiode "bible" for anyone dealing with electronic design issues.