Characterisation of Areal Surface Texture

Author: Richard Leach
Publisher: Springer Science & Business Media
ISBN: 3642364586
Format: PDF, Kindle
Download Now
The function of a component part can be profoundly affected by its surface topography. There are many examples in nature of surfaces that have a well-controlled topography to affect their function. Examples include the hydrophobic effect of the lotus leaf, the reduction of fluid drag due to the riblet structure of shark skin, the directional adhesion of the gecko foot and the angular sensitivity of the multi-faceted fly eye. Surface structuring is also being used extensively in modern manufacturing. In this way many properties can be altered, for example optical, tribological, biological and fluidic. Previously, single line (profile) measurements were adequate to control manufacture of surfaces, but as the need to control the functionality of surfaces increases, there is a growing need for three-dimensional (areal) measurement and characterisation techniques. For this reason there has been considerable research, development and standardisation of areal techniques. This book will present the areal framework that is being adopted by the international community. Whereas previous books have concentrated on the measurement aspects, this book concentrates on the characterisation techniques, i.e. how to interpret the measurement data to give the appropriate (functional) information for a given task. The first part of the book presents the characterisation methods and the second part case studies that highlight the use of areal methods in a broad range of subject areas - from automobile manufacture to archaeology. Contents Introduction to Surface Topography The Areal Field Parameters The Areal Feature Parameters Areal Filtering Methods Areal Form Removal Areal Fractal Methods Choosing the Appropriate Parameter Characterisation of Individual Areal Features Multi-Scale Signature of Surface Topography Correlation of Areal Surface Texture Parameters to Solar Cell Efficiency Characterisation of Cylinder Liner Honing Textures for Production Control Characterisation of the Mechanical Bond Strength for Copper on Glass Plating Applications Inspection of Laser Structured Cams and Conrods Road Surfaces

Advanced Techniques for Assessment Surface Topography

Author: Liam Blunt
Publisher: Elsevier
ISBN: 9780080526522
Format: PDF, ePub, Docs
Download Now
This publication deals with the latest developments in the field of 3D surface metrology and will become a seminal text in this important area. It has been prepared with the support of the European Community’s Directorate General XII and represents the culmination of research conducted by 11 international partners as part of an EU-funded project. The aim of the project is to inform standards bodies of the possibilities that exist for a new international standard covering the field of 3D surface characterisation. The book covers a description of the proposed 3D surface parameters and advanced filtering techniques using wavelet and robust Gaussian methodologies. The next generation areal surface characterisation theories are discussed and their practical implementation is illustrated. It describes techniques for calibration of 3D instrumentation, including stylus instruments as well as scanning probe instrumentation. Practical verification of the 3D parameters and the filtering is illustrated through a series of case studies which cover bio-implant surfaces, automotive cylinder liner and steel sheet. Finally, future developments of the subject are alluded to and implications for future standardisation and development are discussed.

Optical Measurement of Surface Topography

Author: Richard Leach
Publisher: Springer Science & Business Media
ISBN: 9783642120121
Format: PDF, Kindle
Download Now
The measurement and characterisation of surface topography is crucial to modern manufacturing industry. The control of areal surface structure allows a manufacturer to radically alter the functionality of a part. Examples include structuring to effect fluidics, optics, tribology, aerodynamics and biology. To control such manufacturing methods requires measurement strategies. There is now a large range of new optical techniques on the market, or being developed in academia, that can measure areal surface topography. Each method has its strong points and limitations. The book starts with introductory chapters on optical instruments, their common language, generic features and limitations, and their calibration. Each type of modern optical instrument is described (in a common format) by an expert in the field. The book is intended for both industrial and academic scientists and engineers, and will be useful for undergraduate and postgraduate studies.

Fundamental Principles of Engineering Nanometrology

Author: Richard Leach
Publisher: Elsevier
ISBN: 1455777501
Format: PDF
Download Now
Working at the nano-scale demands an understanding of the high-precision measurement techniques that make nanotechnology and advanced manufacturing possible. Richard Leach introduces these techniques to a broad audience of engineers and scientists involved in nanotechnology and manufacturing applications and research. He also provides a routemap and toolkit for metrologists engaging with the rigor of measurement and data analysis at the nano-scale. Starting from the fundamentals of precision measurement, the author progresses into different measurement and characterization techniques. The focus on nanometrology in engineering contexts makes this book an essential guide for the emerging nanomanufacturing / nanofabrication sector, where measurement and standardization requirements are paramount both in product specification and quality assurance. This book provides engineers and scientists with the methods and understanding needed to design and produce high-performance, long-lived products while ensuring that compliance and public health requirements are met. Updated to cover new and emerging technologies, and recent developments in standards and regulatory frameworks, this second edition includes many new sections, e.g. new technologies in scanning probe and e-beam microscopy, recent developments in interferometry and advances in co-ordinate metrology. Demystifies nanometrology for a wide audience of engineers, scientists, and students involved in nanotech and advanced manufacturing applications and research Introduces metrologists to the specific techniques and equipment involved in measuring at the nano-scale or to nano-scale uncertainty Fully updated to cover the latest technological developments, standards, and regulations

Three Dimensional Surface Topography

Author: Ken J Stout
Publisher: Elsevier
ISBN: 9780080542980
Format: PDF, Mobi
Download Now
This fully illustrated text explains the basic measurement techniques, describes the commercially available instruments and provides an overview of the current perception of 3-D topography analysis in the academic world and industry, and the commonly used 3-D parameters and plots for the characterizing and visualizing 3-D surface topography. It also includes new sections providing full treatment of surface characterization, filtering technology and engineered surfaces, as well as a fully updated bibliography.

Computational Surface and Roundness Metrology

Author: Balasubramanian Muralikrishnan
Publisher: Springer Science & Business Media
ISBN: 1848002971
Format: PDF, Docs
Download Now
“Computational Surface and Roundness Metrology” provides an extraordinarily practical and hands-on approach towards understanding the diverse array of mathematical methods used in surface texture and roundness analysis. The book, in combination with a mathematical package or programming language interface, provides an invaluable tool for experimenting, learning, and discovering the many flavors of mathematics that are so routinely taken for granted in metrology. Whether the objective is to understand the origin of that ubiquitous transmission characteristics curve of a filter we see so often yet do not quite comprehend, or to delve into the intricate depths of a deceptively simple problem of fitting a line or a plane to a set of points, this book describes it all (in exhaustive detail). From the graduate student of metrology to the practicing engineer on the shop floor, this book is a must-have reference for all involved in metrology, instrumentation/optics, manufacturing, and electronics.

Rapid Manufacturing

Author: Duc Pham
Publisher: Springer Science & Business Media
ISBN: 1447107039
Format: PDF, ePub, Docs
Download Now
Rapid prototyping is an exciting new technology used to create physical models and functional prototypes directly from CAD models. Rapid tooling concerns the production of tooling using parts manufactured by rapid prototyping. The book describes the characteristics and capabilities of the main known rapid prototyping processes. It covers in detail various commercially available processes such as: Stereolithography (SLA), Selective Laser Sintering (SLS), and others. The text places a strong emphasis on practical applications and contains an abundance of photographs and diagrams to illustrate clearly the principles of the machines and processes involved.

Fundamental Principles of Engineering Nanometrology

Author: Richard Leach
Publisher: Elsevier
ISBN: 1455777501
Format: PDF, ePub, Mobi
Download Now
Working at the nano-scale demands an understanding of the high-precision measurement techniques that make nanotechnology and advanced manufacturing possible. Richard Leach introduces these techniques to a broad audience of engineers and scientists involved in nanotechnology and manufacturing applications and research. He also provides a routemap and toolkit for metrologists engaging with the rigor of measurement and data analysis at the nano-scale. Starting from the fundamentals of precision measurement, the author progresses into different measurement and characterization techniques. The focus on nanometrology in engineering contexts makes this book an essential guide for the emerging nanomanufacturing / nanofabrication sector, where measurement and standardization requirements are paramount both in product specification and quality assurance. This book provides engineers and scientists with the methods and understanding needed to design and produce high-performance, long-lived products while ensuring that compliance and public health requirements are met. Updated to cover new and emerging technologies, and recent developments in standards and regulatory frameworks, this second edition includes many new sections, e.g. new technologies in scanning probe and e-beam microscopy, recent developments in interferometry and advances in co-ordinate metrology. Demystifies nanometrology for a wide audience of engineers, scientists, and students involved in nanotech and advanced manufacturing applications and research Introduces metrologists to the specific techniques and equipment involved in measuring at the nano-scale or to nano-scale uncertainty Fully updated to cover the latest technological developments, standards, and regulations

Micro and Nanomanufacturing

Author: Mark J. Jackson
Publisher: Springer Science & Business Media
ISBN: 038726132X
Format: PDF
Download Now
This, the corrected second printing of Jackson’s authoritative volume on the subject, provides a comprehensive treatment of established micro and nanofabrication techniques. It addresses the needs of practicing manufacturing engineers by applying established and research laboratory manufacturing techniques to a wide variety of materials. Nanofabrication and nanotechnology present a great challenge to engineers and researchers as they manipulate atoms and molecules to produce single artifacts and submicron components and systems. The book provides up-to-date information on a number of subjects of interest to engineers who are seeking more knowledge of how nano and micro devices are designed and fabricated. They will learn about manufacturing and fabrication techniques at the micro and nanoscales; using bulk and surface micromachining techniques, and LiGA, and deep x-ray lithography to manufacture semiconductors. Also covered are subjects including producing master molds with micromachining, the deposition of thin films, pulsed water drop machining, and nanomachining.

Encyclopedia of Materials Characterization

Author: C. R. Brundle
Publisher: Gulf Professional Publishing
ISBN: 9780750691680
Format: PDF
Download Now
Encyclopedia of Materials Characterization is a comprehensive volume on analytical techniques used in materials science for the characterization of surfaces, interfaces and thin films. This flagship volume in the Materials Characterization Series is a unique, stand-alone reference for materials science practitioners, process engineers, students and anyone with a need to know about the capabilities available in materials analysis. An encyclopedia of 50 concise articles, this book will also be a practical companion to the forthcoming books in the Series. It describes widely-ranging techniques in a jargon-free manner and includes summary pages for each technique to supply a quick survey of its capabilities.