Chemical Engineering Design and Analysis

Author: T. Michael Duncan
Publisher: Cambridge University Press
ISBN: 9780521639569
Format: PDF, Mobi
Download Now
Students taking their first chemical engineering course plunge into the 'nuts and bolts' of mass and energy balances and often miss the broad view of what chemical engineers do. This 1998 text offers a well-paced introduction to chemical engineering. Students are first introduced to the fundamental steps in design and three methods of analysis: mathematical modeling, graphical methods, and dimensional analysis. The book then describes how to apply engineering skills, such as how to simplify calculations through assumptions and approximations; how to verify calculations, significant figures, spreadsheets, graphing (standard, semi-log and log-log); and how to use data maps. In addition, the book teaches engineering skills through the design and analysis of chemical processes and process units in order to assess product quality, economics, safety, and environmental impact. This text will help undergraduate students in chemical engineering develop engineering skills early in their studies. Lecturer's solution manual available from the publisher on request.

Chemical Product Design

Author: E. L. Cussler
Publisher: Cambridge University Press
ISBN: 113949791X
Format: PDF, Kindle
Download Now
The chemical industry is changing, going beyond commodity chemicals to a palette of higher value added products. This groundbreaking book, now revised and expanded, documents this change and shows how to meet the challenges implied. Presenting a four-step design process - needs, ideas, selection, manufacture - the authors supply readers with a simple design template that can be applied to a wide variety of products. Four new chapters on commodities, devices, molecules/drugs and microstructures show how this template can be applied to products including oxygen for emphysema patients, pharmaceuticals like taxol, dietary supplements like lutein, and beverages which are more satisfying. For different groups of products the authors supply both strategies for design and summaries of relevant science. Economic analysis is expanded, emphasizing the importance of speed-to-market, selling ideas to investors and an expectation of limited time in the market. Extra examples, homework problems and a solutions manual are available.

Chemical Engineering

Author: Morton Denn
Publisher: Cambridge University Press
ISBN: 1139503413
Format: PDF, Mobi
Download Now
'Chemical engineering is the field of applied science that employs physical, chemical, and biological rate processes for the betterment of humanity'. This opening sentence of Chapter 1 has been the underlying paradigm of chemical engineering. Chemical Engineering: An Introduction is designed to enable the student to explore the activities in which a modern chemical engineer is involved by focusing on mass and energy balances in liquid-phase processes. Problems explored include the design of a feedback level controller, membrane separation, hemodialysis, optimal design of a process with chemical reaction and separation, washout in a bioreactor, kinetic and mass transfer limits in a two-phase reactor, and the use of the membrane reactor to overcome equilibrium limits on conversion. Mathematics is employed as a language at the most elementary level. Professor Morton M. Denn incorporates design meaningfully; the design and analysis problems are realistic in format and scope.

Molecular Engineering Thermodynamics

Author: Juan J. de Pablo
Publisher: Cambridge University Press
ISBN: 1107469570
Format: PDF, Kindle
Download Now
Building up gradually from first principles, this unique introduction to modern thermodynamics integrates classical, statistical and molecular approaches and is especially designed to support students studying chemical and biochemical engineering. In addition to covering traditional problems in engineering thermodynamics in the context of biology and materials chemistry, students are also introduced to the thermodynamics of DNA, proteins, polymers and surfaces. It includes over 80 detailed worked examples, covering a broad range of scenarios such as fuel cell efficiency, DNA/protein binding, semiconductor manufacturing and polymer foaming, emphasizing the practical real-world applications of thermodynamic principles; more than 300 carefully tailored homework problems, designed to stretch and extend students' understanding of key topics, accompanied by an online solution manual for instructors; and all the necessary mathematical background, plus resources summarizing commonly used symbols, useful equations of state, microscopic balances for open systems, and links to useful online tools and datasets.

Introduction to Chemical Engineering Fluid Mechanics

Author: William M. Deen
Publisher: Cambridge University Press
ISBN: 1316578089
Format: PDF, ePub, Docs
Download Now
Designed for introductory undergraduate courses in fluid mechanics for chemical engineers, this stand-alone textbook illustrates the fundamental concepts and analytical strategies in a rigorous and systematic, yet mathematically accessible manner. Using both traditional and novel applications, it examines key topics such as viscous stresses, surface tension, and the microscopic analysis of incompressible flows which enables students to understand what is important physically in a novel situation and how to use such insights in modeling. The many modern worked examples and end-of-chapter problems provide calculation practice, build confidence in analyzing physical systems, and help develop engineering judgment. The book also features a self-contained summary of the mathematics needed to understand vectors and tensors, and explains solution methods for partial differential equations. Including a full solutions manual for instructors available at www.cambridge.org/deen, this balanced textbook is the ideal resource for a one-semester course.

Numerical Methods with Chemical Engineering Applications

Author: Kevin D. Dorfman
Publisher: Cambridge University Press
ISBN: 1108107834
Format: PDF, Docs
Download Now
Designed primarily for undergraduates, but also graduates and practitioners, this textbook integrates numerical methods and programming with applications from chemical engineering. Combining mathematical rigor with an informal writing style, it thoroughly introduces the theory underlying numerical methods, its translation into MATLAB programs, and its use for solving realistic problems. Specific topics covered include accuracy, convergence and numerical stability, as well as stiffness and ill-conditioning. MATLAB codes are developed from scratch, and their implementation is explained in detail, all while assuming limited programming knowledge. All scripts employed are downloadable, and built-in MATLAB functions are discussed and contextualised. Numerous examples and homework problems - from simple questions to extended case studies - accompany the text, allowing students to develop a deep appreciation for the range of real chemical engineering problems that can be solved using numerical methods. This is the ideal resource for a single-semester course on numerical methods, as well as other chemical engineering courses taught over multiple semesters.

Parametric Sensitivity in Chemical Systems

Author: Arvind Varma
Publisher: Cambridge University Press
ISBN: 9780521019842
Format: PDF, ePub, Docs
Download Now
The behavior of a chemical system is affected by many physicochemical parameters. The sensitivity of the system's behavior to changes in parameters is known as parametric sensitivity. When a system operates in a parametrically sensitive region, its performance becomes unreliable and changes sharply with small variations in parameters. Thus, it would be of great value to predict sensitivity behavior in chemical systems. This book is the first to provide a thorough treatment of the concept of parametric sensitivity and the mathematical tool it generated, sensitivity analysis. The emphasis is on applications to real situations. The book begins with definitions of various sensitivity indices and describes the numerical techniques used for their evaluation. Extensively illustrated chapters discuss sensitivity analysis in a variety of chemical reactors - batch, tubular, continuous-flow, fixed-bed - and in combustion systems, air pollution, and metabolic processes. Chemical engineers, chemists, graduate students, and researchers will welcome this valuable resource.

Principles of Chemical Separations with Environmental Applications

Author: Richard D. Noble
Publisher: Cambridge University Press
ISBN: 1107320224
Format: PDF, Kindle
Download Now
Chemical separations are of central importance in many areas of environmental science, whether it is the clean up of polluted water or soil, the treatment of discharge streams from chemical processes, or modification of a specific process to decrease its environmental impact. This book is an introduction to chemical separations, focusing on their use in environmental applications. The authors first discuss the general aspects of separation technology as a unit operation. They also describe how property differences are used to generate separations, the use of separating agents, and the selection criteria for particular separation techniques. The general approach for each technology is to present the chemical and/or physical basis for the process and explain how to evaluate it for design and analysis. The book contains many worked examples and homework problems. It is an ideal textbook for undergraduate and graduate students taking courses on environmental separations or environmental engineering.

Colloidal Suspension Rheology

Author: Jan Mewis
Publisher: Cambridge University Press
ISBN: 0521515998
Format: PDF
Download Now
Presented in an accessible and introductory manner, this is the first book devoted to the comprehensive study of colloidal suspensions.