Chemistry of Sustainable Energy

Author: Nancy E. Carpenter
Publisher: CRC Press
ISBN: 1466575328
Format: PDF, Docs
Download Now
Understanding the chemistry underlying sustainable energy is central to any long-term solution to meeting our future energy needs. Chemistry of Sustainable Energy presents chemistry through the lens of several sustainable energy options, demonstrating the breadth and depth of research being carried out to address issues of sustainability and the global energy demand. The author, an organic chemist, reinforces fundamental principles of chemistry as they relate to renewable or sustainable energy generation throughout the book. Written with a qualitative, structural bias, this survey text illustrates the increasingly interdisciplinary nature of chemistry research with examples from the literature to provide relevant snapshots of how solutions are developed, providing a broad foundation for further exploration. It examines those areas of energy conversion that show the most promise of achieving sustainability at this point, namely, wind power, fuel cells, solar photovoltaics, and biomass conversion processes. Next-generation nuclear power is addressed as well. This book also covers topics related to energy and energy generation that are closely tied to understanding the chemistry of sustainable energy, including fossil fuels, thermodynamics, polymers, hydrogen generation and storage, and carbon capture. It offers readers a broad understanding of relevant fundamental chemical principles and in-depth exposure to creative and promising approaches to sustainable energy development.

Chemistry of Sustainable Energy

Author: Nancy E. Carpenter
Publisher: CRC Press
ISBN: 1466575336
Format: PDF, Mobi
Download Now
Understanding the chemistry underlying sustainable energy is central to any long-term solution to meeting our future energy needs. Chemistry of Sustainable Energy presents chemistry through the lens of several sustainable energy options, demonstrating the breadth and depth of research being carried out to address issues of sustainability and the global energy demand. The author, an organic chemist, reinforces fundamental principles of chemistry as they relate to renewable or sustainable energy generation throughout the book. Written with a qualitative, structural bias, this survey text illustrates the increasingly interdisciplinary nature of chemistry research with examples from the literature to provide relevant snapshots of how solutions are developed, providing a broad foundation for further exploration. It examines those areas of energy conversion that show the most promise of achieving sustainability at this point, namely, wind power, fuel cells, solar photovoltaics, and biomass conversion processes. Next-generation nuclear power is addressed as well. This book also covers topics related to energy and energy generation that are closely tied to understanding the chemistry of sustainable energy, including fossil fuels, thermodynamics, polymers, hydrogen generation and storage, and carbon capture. It offers readers a broad understanding of relevant fundamental chemical principles and in-depth exposure to creative and promising approaches to sustainable energy development.

Chemistry of Sustainable Energy

Author: Nancy E. Carpenter
Publisher: Chapman & Hall/CRC
ISBN: 9781138465299
Format: PDF, Kindle
Download Now
Understanding the chemistry underlying sustainable energy is central to any long-term solution to meeting our future energy needs. Chemistry of Sustainable Energy presents chemistry through the lens of several sustainable energy options, demonstrating the breadth and depth of research being carried out to address issues of sustainability and the global energy demand. The author, an organic chemist, reinforces fundamental principles of chemistry as they relate to renewable or sustainable energy generation throughout the book.Written with a qualitative, structural bias, this survey text illustrates the increasingly interdisciplinary nature of chemistry research with examples from the literature to provide relevant snapshots of how solutions are developed, providing a broad foundation for further exploration. It examines those areas of energy conversion that show the most promise of achieving sustainability at this point, namely, wind power, fuel cells, solar photovoltaics, and biomass conversion processes. Next-generation nuclear power is addressed as well.This book also covers topics related to energy and energy generation that are closely tied to understanding the chemistry of sustainable energy, including fossil fuels, thermodynamics, polymers, hydrogen generation and storage, and carbon capture. It offers readers a broad understanding of relevant fundamental chemical principles and in-depth exposure to creative and promising approaches to sustainable energy development.

Nanomaterials for Sustainable Energy

Author: Quan Li
Publisher: Springer
ISBN: 3319320238
Format: PDF, Docs
Download Now
This book presents the unique mechanical, electrical, and optical properties of nanomaterials, which play an important role in the recent advances of energy-related applications. Different nanomaterials have been employed in energy saving, generation, harvest, conversion, storage, and transport processes very effectively and efficiently. Recent progress in the preparation, characterization and usage of 1D, 2D nanomaterials and hybrid architectures for energy-related applications and relevant technologies and devices, such as solar cells, thermoelectronics, piezoelectronics, solar water splitting, hydrogen production/storage, fuel cells, batteries, and supercapacitors is covered. Moreover, the book also highlights novel approaches in nanomaterials design and synthesis and evaluating materials sustainability issues. Contributions from active and leading experts regarding important aspects like the synthesis, assembly, and properties of nanomaterials for energy-related applications are compiled into a reference book. As evident from the diverse topics, the book will be very valuable to researchers working in the intersection of physics, chemistry, biology, materials science and engineering. It may set the standard and stimulates future developments in this rapidly emerging fertile frontier of nanomaterials for energy.

Green Chemistry for Sustainable Biofuel Production

Author: Veera Gnaneswar Gude
Publisher: CRC Press
ISBN: 1351582852
Format: PDF, Kindle
Download Now
Renewable fuel research and process development requires interdisciplinary approaches involving chemists and physicists from both scientific and engineering backgrounds. Here is an important volume that emphasizes green chemistry and green engineering principles for sustainable process development from an interdisciplinary point of view. It creates an enriching knowledge base on green chemistry of biofuel production, sustainable process development, and green engineering principles for renewable fuel production. This book includes chapters contributed by both research scientists and research engineers with significant experience in biofuel chemistry and processes. The book offers an abundance of scientific experimental methods and analytical procedures and interpretation of the results that capture the state-of-the-art knowledge in this field. The wide range of topics make this book a valuable resource for academicians, researchers, industrial practitioners and scientists, and engineers in various renewable energy fields. Key features: • Emphasizes green chemistry and green engineering principles for sustainable process development for biofuel production • Discusses a wide array of biofuels from algal biomass to waste-to-energy technologies and wastewater treatment and activated sludge processes • Presents advances and developments in biofuel green chemistry and green engineering, including process intensification (microwaves/ultrasound), ionic liquids, and green catalysis • Looks at environmental assessment and economic impact of biofuel production

Materials for Sustainable Energy

Author: Rudi Van Eldik
Publisher: Academic Press
ISBN: 9780128150771
Format: PDF
Download Now
Materials for Sustainable Energy, Volume 72, the latest release in the Advances in Inorganic Chemistry series presents timely and informative summaries on the current progress in a variety of subject areas. In this volume, concise, authoritative reviews provide updates on the photocatalytic generation of solar fuels (heterogeneous systems), Photocatalytic materials for energy and environment, The photoelectrocatalytic production of solar fuels, Artificial photosynthesis (homogeneous catalysis), The photocatalytic synthesis of chemicals, Dye sensitized solar cells, Supercapacitors, Lithium ion cells, Catalytic air purification (VOCs, soot), Catalytic air purification (NOx), and more. Features comprehensive reviews on the latest developments in inorganic reaction mechanisms, a subfield of inorganic chemistry Includes contributions from leading experts in the field of inorganic reaction mechanisms Serves as an indispensable reference to advanced researchers in inorganic reaction mechanisms

Biomass as a Sustainable Energy Source for the Future

Author: Wiebren de Jong
Publisher: John Wiley & Sons
ISBN: 1118304918
Format: PDF, Mobi
Download Now
Focusing on the conversion of biomass into gas or liquid fuels the book covers physical pre-treatment technologies, thermal, chemical and biochemical conversion technologies • Details the latest biomass characterization techniques • Explains the biochemical and thermochemical conversion processes • Discusses the development of integrated biorefineries, which are similar to petroleum refineries in concept, covering such topics as reactor configurations and downstream processing • Describes how to mitigate the environmental risks when using biomass as fuel • Includes many problems, small projects, sample calculations and industrial application examples

Ferrites and Ferrates

Author: Dionysios D. Dionysiou
Publisher: ACS Symposium
ISBN: 9780841231870
Format: PDF, Kindle
Download Now
Earth-abundant iron and its oxides are not only "greener" than many of rare and precious metals, but can elegantly perform numerous catalytic reactions of industrial and environmental significance, often mimicking enzymes. Industrial applications include the use of iron and iron oxide-based compounds in pigments, magnetic recording media, catalysis, and magnetic fluids. Iron oxides have shown potential in manufacturing, water purification, and photocatalytic transformation to generate solar fuel. This book presents synthesis and application of ferrites, including high energy density rechargeable batteries, in cleaner ("greener") technologies for organic syntheses, and in environmentally friendly water and wastewater treatment processes. This book comprises 18 chapters with a focus on synthesis and environmental applications of ferrites and ferrates. Topics of the book encompass greener catalysis (nano-catalysis) emanating from ferrites and ferrates to achieve chemical energy transformation, organic syntheses and transformation, as well as eco-friendly water and wastewater treatment processes, namely removal of metals, oxidation of micropollutants, and inactivation of microorganisms and toxins.

Renewable Energy

Author: Roland Wengenmayr
Publisher: John Wiley & Sons
ISBN: 3527671366
Format: PDF, Mobi
Download Now
In the years since the publication of the first edition of this book, the world has undergone drastic changes in terms of energy sources. This is reflected in the expansion of this second edition from 20 to 26 chapters. The most dramatic occurrence was the Tsunami which struck Japan in March of 2011 and set off a reactor catastrophe at the nuclear power plants in Fukushima. On the other hand fossil fuel technology drives the climate change to a threatening level. So, renewable energy sources are essential for the 21st century. The increasing number of wind power plants, solar collectors and photovoltaic installations demonstrates perceptibly that many innovations for tapping renewable energy sources have matured: very few other technologies have developed so dynamically in the past years. Nearly all the chapters were written by professionals in the respective fields. That makes this book an especially valuable and reliable source of information. The second edition is extended by several new chapters such as tidal power stations, the Desertec project, thermography of buildings and more. Furthermore, the critical debate about current first generation bio-fuels is carefully reflected, and the book presents promising solutions that do not trade in food for fuel. The editors are experienced journalists and illustrate the text with simple diagrams and information boxes, printed in full-color throughout. A valuable resource for applied physicists, engineers in power technology, engineers, and anyone interested in natural sciences.