Classical Dynamics

Author: E C G Sudarshan
Publisher: World Scientific Publishing Company
ISBN: 9814713899
Format: PDF
Download Now
Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics. Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of dynamical systems is discussed in detail, and Poisson brackets are developed as a realization of Lie brackets. Other topics include treatments of classical spin, elementary relativistic systems in the classical context, irreducible realizations of the Galileo and Poincaré groups, and hydrodynamics as a Galilean field theory. Students will also find that this approach that deals with problems of manifest covariance, the no-interaction theorem in Hamiltonian mechanics and the structure of action-at-a-distance theories provides all the essential preparatory groundwork for a passage to quantum field theory. This reprinting of the original text published in 1974 is a testimony to the vitality of the contents that has remained relevant over nearly half a century.

A Modern Approach to Classical Mechanics

Author: Harald Iro
Publisher: World Scientific
ISBN: 9789812382139
Format: PDF
Download Now
The approach to classical mechanics adopted in this book includes and stresses recent developments in nonlinear dynamical systems. The concepts necessary to formulate and understand chaotic behavior are presented. Besides the conventional topics (such as oscillators, the Kepler problem, spinning tops and the two centers problem) studied in the frame of Newtonian, Lagrangian, and Hamiltonian mechanics, nonintegrable systems (the H‚non-Heiles system, motion in a Coulomb force field together with a homogeneous magnetic field, the restricted three-body problem) are also discussed. The question of the integrability (of planetary motion, for example) leads finally to the KAM-theorem.This book is the result of lectures on 'Classical Mechanics' as the first part of a basic course in Theoretical Physics. These lectures were given by the author to undergraduate students in their second year at the Johannes Kepler University Linz, Austria. The book is also addressed to lecturers in this field and to physicists who want to obtain a new perspective on classical mechanics.

Classical Mechanics

Author: John Robert Taylor
Publisher: University Science Books
ISBN: 9781891389221
Format: PDF, ePub
Download Now
'Classical Mechanics' is intended for students who have studied some mechanics in an introductory physics course. A particular highlight is the chapter on chaos, which focuses on a few simple systems to give truly comprehensible coverage.

Fundamental Principles of Classical Mechanics

Author: Kai S Lam
Publisher: World Scientific Publishing Company
ISBN: 9814551503
Format: PDF, Kindle
Download Now
This book is written with the belief that classical mechanics, as a theoretical discipline, possesses an inherent beauty, depth, and richness that far transcends its immediate applications in mechanical systems. These properties are manifested, by and large, through the coherence and elegance of the mathematical structure underlying the discipline, and are eminently worthy of being communicated to physics students at the earliest stage possible. This volume is therefore addressed mainly to advanced undergraduate and beginning graduate physics students who are interested in the application of modern mathematical methods in classical mechanics, in particular, those derived from the fields of topology and differential geometry, and also to the occasional mathematics student who is interested in important physics applications of these areas of mathematics. Its main purpose is to offer an introductory and broad glimpse of the majestic edifice of the mathematical theory of classical dynamics, not only in the time-honored analytical tradition of Newton, Laplace, Lagrange, Hamilton, Jacobi, and Whittaker, but also the more topological/geometrical one established by Poincare, and enriched by Birkhoff, Lyapunov, Smale, Siegel, Kolmogorov, Arnold, and Moser (as well as many others).

Klassische Mechanik

Author: Herbert Goldstein
Publisher: John Wiley & Sons
ISBN: 3527662073
Format: PDF
Download Now
Der Goldstein gehört zu den Standardwerken für die Vorlesung in Klassischer Mechanik, die Pflichtvorlesung und Teil des Theorie-Lehrplans jedes Physik-Studienganges ist. Für diese aktuelle Ausgabe haben Charles Poole und John Safko die Texte überarbeitet und neueste Themen, Anwendungen und Notationen eingearbeitet und sind damit auf moderne Trends in der Theoretischen Mechanik eingegangen. Neue numerische Übungen verhelfen den Studenten zur Fähigkeit, Computeranwendungen für die Lösung von Physikproblemen zu benutzen. Mathematische Techniken werden detailliert eingeführt, so daß der Text auch für Studenten ohne den entsprechenden Hintergrund der Theoretischen Mechanik verständlich ist.

CLASSICAL MECHANICS

Author: R. N. TIWARI
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120331265
Format: PDF, Docs
Download Now
Intended as a text for postgraduate students of mathematics, this compact and well-organized book offers insights into the principles of classical mechanics and, in particular, deals with the problems of dynamical systems. Divided into seven chapters, the text begins with a discussion on some elementary results of statics and dynamics. It then goes on to analyze at length the Hamiltonian formulation along with the Poisson bracket, the variational principle (taking Euler’s equation of calculus of variation as the base), and different forms of the variational principle. Finally, the text explains the integral invariants, canonical transformations, and the Hamilton–Jacobi theory. KEY FEATURES • A fairly large number of worked-out examples are interspersed throughout the text to illustrate the application of the concepts to the problems discussed. • Miscellaneous Exercises are given at the end of the book to drill the students in self-study. • The text entirely covers UGC model curriculum for M.Sc. (Mathematics).

Classical Mechanics Second Edition

Author: Tai L. Chow
Publisher: CRC Press
ISBN: 1466569980
Format: PDF, ePub, Docs
Download Now
Classical Mechanics, Second Edition presents a complete account of the classical mechanics of particles and systems for physics students at the advanced undergraduate level. The book evolved from a set of lecture notes for a course on the subject taught by the author at California State University, Stanislaus, for many years. It assumes the reader has been exposed to a course in calculus and a calculus-based general physics course. However, no prior knowledge of differential equations is required. Differential equations and new mathematical methods are developed in the text as the occasion demands. The book begins by describing fundamental concepts, such as velocity and acceleration, upon which subsequent chapters build. The second edition has been updated with two new sections added to the chapter on Hamiltonian formulations, and the chapter on collisions and scattering has been rewritten. The book also contains three new chapters covering Newtonian gravity, the Hamilton-Jacobi theory of dynamics, and an introduction to Lagrangian and Hamiltonian formulations for continuous systems and classical fields. To help students develop more familiarity with Lagrangian and Hamiltonian formulations, these essential methods are introduced relatively early in the text. The topics discussed emphasize a modern perspective, with special note given to concepts that were instrumental in the development of modern physics, for example, the relationship between symmetries and the laws of conservation. Applications to other branches of physics are also included wherever possible. The author provides detailed mathematical manipulations, while limiting the inclusion of the more lengthy and tedious ones. Each chapter contains homework problems of varying degrees of difficulty to enhance understanding of the material in the text. This edition also contains four new appendices on D'Alembert's principle and Lagrange's equations, derivation of Hamilton’s principle, Noether’s theorem, and conic sections.