Classical Mechanics with Mathematica

Author: Antonio Romano
Publisher: Springer
ISBN: 3319775952
Format: PDF, ePub
Download Now
This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dynamics, among others. This new edition has been completely revised and updated and now includes almost 200 exercises, as well as new chapters on celestial mechanics, one-dimensional continuous systems, and variational calculus with applications. Several Mathematica® notebooks are available to download that will further aid students in their understanding of some of the more difficult material. Unique in its scope of coverage and method of approach, Classical Mechanics with Mathematica® will be useful resource for graduate students and advanced undergraduates in applied mathematics and physics who hope to gain a deeper understanding of mechanics.

Micromechanics with Mathematica

Author: Seiichi Nomura
Publisher: John Wiley & Sons
ISBN: 1118385705
Format: PDF, ePub, Mobi
Download Now
Demonstrates the simplicity and effectiveness of Mathematica as the solution to practical problems in composite materials. Designed for those who need to learn how micromechanical approaches can help understand the behaviour of bodies with voids, inclusions, defects, this book is perfect for readers without a programming background. Thoroughly introducing the concept of micromechanics, it helps readers assess the deformation of solids at a localized level and analyse a body with microstructures. The author approaches this analysis using the computer algebra system Mathematica, which facilitates complex index manipulations and mathematical expressions accurately. The book begins by covering the general topics of continuum mechanics such as coordinate transformations, kinematics, stress, constitutive relationship and material symmetry. Mathematica programming is also introduced with accompanying examples. In the second half of the book, an analysis of heterogeneous materials with emphasis on composites is covered. Takes a practical approach by using Mathematica, one of the most popular programmes for symbolic computation Introduces the concept of micromechanics with worked-out examples using Mathematica code for ease of understanding Logically begins with the essentials of the topic, such as kinematics and stress, before moving to more advanced areas Applications covered include the basics of continuum mechanics, Eshelby's method, analytical and semi-analytical approaches for materials with inclusions (composites) in both infinite and finite matrix media and thermal stresses for a medium with inclusions, all with Mathematica examples Features a problem and solution section on the book’s companion website, useful for students new to the programme

Continuum Mechanics using Mathematica

Author: Antonio Romano
Publisher: Springer
ISBN: 1493916041
Format: PDF, ePub, Docs
Download Now
This textbook's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. Covering essential principles and fundamental applications, this second edition of Continuum Mechanics using Mathematica® provides a solid basis for a deeper study of more challenging and specialized problems related to nonlinear elasticity, polar continua, mixtures, piezoelectricity, ferroelectricity, magneto-fluid mechanics and state changes (see A. Romano, A. Marasco, Continuum Mechanics: Advanced Topics and Research Trends, Springer (Birkhäuser), 2010, ISBN 978-0-8176-4869-5). Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and one appendix * Recent developments highlighted through coverage of more significant applications to areas such as wave propagation, fluid mechanics, porous media, linear elasticity. This second edition expands the key topics and features to include: * Two new applications of fluid dynamics: meteorology and navigation * New exercises at the end of the existing chapters * The packages are rewritten for Mathematica 9 Continuum Mechanics using Mathematica®: Fundamentals, Applications and Scientific Computing is aimed at advanced undergraduates, graduate students and researchers in applied mathematics, mathematical physics and engineering. It may serve as a course textbook or self-study reference for anyone seeking a solid foundation in continuum mechanics.

Mechanics and Dynamical Systems with Mathematica

Author: Nicola Bellomo
Publisher: Springer Science & Business Media
ISBN: 146121338X
Format: PDF
Download Now
Modeling and Applied Mathematics Modeling the behavior of real physical systems by suitable evolution equa tions is a relevant, maybe the fundamental, aspect of the interactions be tween mathematics and applied sciences. Modeling is, however, only the first step toward the mathematical description and simulation of systems belonging to real world. Indeed, once the evolution equation is proposed, one has to deal with mathematical problems and develop suitable simula tions to provide the description of the real system according to the model. Within this framework, one has an evolution equation and the re lated mathematical problems obtained by adding all necessary conditions for their solution. Then, a qualitative analysis should be developed: this means proof of existence of solutions and analysis of their qualitative be havior. Asymptotic analysis may include a detailed description of stability properties. Quantitative analysis, based upon the application ofsuitable methods and algorithms for the solution of problems, ends up with the simulation that is the representation of the dependent variable versus the independent one. The information obtained by the model has to be compared with those deriving from the experimental observation of the real system. This comparison may finally lead to the validation of the model followed by its application and, maybe, further generalization.

Mathematische Physik Klassische Mechanik

Author: Andreas Knauf
Publisher: Springer-Verlag
ISBN: 3662557762
Format: PDF
Download Now
Als Grenztheorie der Quantenmechanik besitzt die klassische Dynamik einen großen Formenreichtum – vom gut berechenbaren bis zum chaotischen Verhalten. Ausgehend von interessanten Beispielen wird in dem Band nicht nur eine gelungene Auswahl grundlegender Themen vermittelt, sondern auch der Einstieg in viele aktuelle Forschungsgebiete im Bereich der klassischen Mechanik. Didaktisch geschickt aufgebaut und mit hilfreichen Anhängen versehen, werden lediglich Kenntnisse der Grundvorlesungen in Mathematik vorausgesetzt. Mit über 100 Aufgaben und Lösungen.

Particle Modeling

Author: Donald Greenspan
Publisher: Springer Science & Business Media
ISBN: 9780817639853
Format: PDF, ePub, Docs
Download Now
A reference for the field of particle modelling - the study of dynamical behaviour of solids and fluids in response to external forces, with the solids and fluids modelled as systems of atoms and molecules.

Geometric Optics

Author: Antonio Romano
Publisher: Springer Science & Business Media
ISBN: 9780817648725
Format: PDF, Kindle
Download Now
This book—unique in the literature—provides readers with the mathematical background needed to design many of the optical combinations that are used in astronomical telescopes and cameras. The results presented in the work were obtained by using a different approach to third-order aberration theory as well as the extensive use of the software package Mathematica®. Replete with workout examples and exercises, Geometric Optics is an excellent reference for advanced graduate students, researchers, and practitioners in applied mathematics, engineering, astronomy, and astronomical optics. The work may be used as a supplementary textbook for graduate-level courses in astronomical optics, optical design, optical engineering, programming with Mathematica, or geometric optics.

Einf hrung in die Himmelsmechanik

Author: Forest Ray Moulton
Publisher: Springer-Verlag
ISBN: 3663160483
Format: PDF, ePub
Download Now
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.