Clifford Algebras An Introduction

Author: D. J. H. Garling
Publisher: Cambridge University Press
ISBN: 1107096383
Format: PDF, ePub
Download Now
A straightforward introduction to Clifford algebras, providing the necessary background material and many applications in mathematics and physics.

Undergraduate Commutative Algebra

Author: Miles Reid
Publisher: Cambridge University Press
ISBN: 9780521458894
Format: PDF, ePub, Docs
Download Now
In this well-written introduction to commutative algebra, the author shows the link between commutative ring theory and algebraic geometry. In addition to standard material, the book contrasts the methods and ideology of modern abstract algebra with concrete applications in algebraic geometry and number theory. Professor Reid begins with a discussion of modules and Noetherian rings before moving on to finite extensions and the Noether normalization. Sections on the nullstellensatz and rings of fractions precede sections on primary decomposition and normal integral domains. This book is ideal for anyone seeking a primer on commutative algebra.

Clifford Geometric Algebras

Author: William Baylis
Publisher: Springer Science & Business Media
ISBN: 1461241049
Format: PDF, ePub, Docs
Download Now
This volume is an outgrowth of the 1995 Summer School on Theoretical Physics of the Canadian Association of Physicists (CAP), held in Banff, Alberta, in the Canadian Rockies, from July 30 to August 12,1995. The chapters, based on lectures given at the School, are designed to be tutorial in nature, and many include exercises to assist the learning process. Most lecturers gave three or four fifty-minute lectures aimed at relative novices in the field. More emphasis is therefore placed on pedagogy and establishing comprehension than on erudition and superior scholarship. Of course, new and exciting results are presented in applications of Clifford algebras, but in a coherent and user-friendly way to the nonspecialist. The subject area of the volume is Clifford algebra and its applications. Through the geometric language of the Clifford-algebra approach, many concepts in physics are clarified, united, and extended in new and sometimes surprising directions. In particular, the approach eliminates the formal gaps that traditionally separate clas sical, quantum, and relativistic physics. It thereby makes the study of physics more efficient and the research more penetrating, and it suggests resolutions to a major physics problem of the twentieth century, namely how to unite quantum theory and gravity. The term "geometric algebra" was used by Clifford himself, and David Hestenes has suggested its use in order to emphasize its wide applicability, and b& cause the developments by Clifford were themselves based heavily on previous work by Grassmann, Hamilton, Rodrigues, Gauss, and others.

Quaternions Clifford Algebras and Relativistic Physics

Author: Patrick R. Girard
Publisher: Springer Science & Business Media
ISBN: 3764377917
Format: PDF, ePub, Docs
Download Now
The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.

Clifford Algebras

Author: Rafal Ablamowicz
Publisher: Springer Science & Business Media
ISBN: 1461220440
Format: PDF, ePub, Docs
Download Now
The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers.

Clifford Algebras and Dirac Operators in Harmonic Analysis

Author: John E. Gilbert
Publisher: Cambridge University Press
ISBN: 9780521346542
Format: PDF, ePub, Docs
Download Now
The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds, and harmonic analysis. The authors show how algebra, geometry, and differential equations play a more fundamental role in Euclidean Fourier analysis. They then link their presentation of the Euclidean theory naturally to the representation theory of semi-simple Lie groups.

Introductory Lectures on Rings and Modules

Author: John A. Beachy
Publisher: Cambridge University Press
ISBN: 9780521644075
Format: PDF, Kindle
Download Now
A first-year graduate text or reference for advanced undergraduates on noncommutative aspects of rings and modules.

Dirac Operators in Riemannian Geometry

Author: Thomas Friedrich
Publisher: American Mathematical Soc.
ISBN: 0821820559
Format: PDF, ePub
Download Now
Examines the Dirac operator on Riemannian manifolds, especially its connection with the underlying geometry and topology of the manifold. The presentation includes a review of Clifford algebras, spin groups and the spin representation, as well as a review of spin structures and spin [superscript C] structures. With this foundation established, the Dirac operator is defined and studied, with special attention to the cases of Hermitian manifolds and symmetric spaces. Then, certain analytic properties are established, including self-adjointness and the Fredholm property. An important link between the geometry and the analysis is provided by estimates for the eigenvalues of the Dirac operator in terms of the scalar curvature and the sectional curvature. Considerations of Killing spinors and solutions of the twistor equation on M lead to results about whether M is an Einstein manifold or conformally equivalent to one. Finally, in an appendix, Friedrich gives a concise introduction to the Seiberg-Witten invariants, which are a powerful tool for the study of four-manifolds. There is also an appendix reviewing principal bundles and connections.

An Introduction to Clifford Algebras and Spinors

Author: Roldao Da Rocha, Jr.
Publisher: Oxford University Press
ISBN: 0198782926
Format: PDF, ePub, Mobi
Download Now
This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and is accessible to both students and researchers. It emphasizes the formal character and the deep algebraic and geometric completeness, and merges them with the physical applications. The style is clear and precise, but not pedantic. The sole pre-requisites is a course in Linear Algebra which most students of Physics, Mathematics or Engineering will have covered as part of their undergraduate studies.

Geometric Algebra for Computer Science

Author: Leo Dorst
Publisher: Elsevier
ISBN: 0080553109
Format: PDF
Download Now
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA