Clifford Algebras and Lie Theory

Author: Eckhard Meinrenken
Publisher: Springer Science & Business Media
ISBN: 3642362168
Format: PDF, ePub, Docs
Download Now
This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré–Birkhoff–Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.

Quantum Theory Groups and Representations

Author: Peter Woit
Publisher: Springer
ISBN: 3319646125
Format: PDF, ePub, Docs
Download Now
This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

Partial Differential Relations

Author: Misha Gromov
Publisher: Springer Science & Business Media
ISBN: 3662022672
Format: PDF, Mobi
Download Now
The classical theory of partial differential equations is rooted in physics, where equations (are assumed to) describe the laws of nature. Law abiding functions, which satisfy such an equation, are very rare in the space of all admissible functions (regardless of a particular topology in a function space). Moreover, some additional (like initial or boundary) conditions often insure the uniqueness of solutions. The existence of these is usually established with some apriori estimates which locate a possible solution in a given function space. We deal in this book with a completely different class of partial differential equations (and more general relations) which arise in differential geometry rather than in physics. Our equations are, for the most part, undetermined (or, at least, behave like those) and their solutions are rather dense in spaces of functions. We solve and classify solutions of these equations by means of direct (and not so direct) geometric constructions. Our exposition is elementary and the proofs of the basic results are selfcontained. However, there is a number of examples and exercises (of variable difficulty), where the treatment of a particular equation requires a certain knowledge of pertinent facts in the surrounding field. The techniques we employ, though quite general, do not cover all geometrically interesting equations. The border of the unexplored territory is marked by a number of open questions throughout the book.

Information Geometry

Author: Nihat Ay
Publisher: Springer
ISBN: 3319564781
Format: PDF, Kindle
Download Now
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, information theory, or the foundations of statistics, to statisticians as well as to scientists interested in the mathematical foundations of complex systems.

Fundamental Algebraic Geometry

Author: Barbara Fantechi
Publisher: American Mathematical Soc.
ISBN: 0821842455
Format: PDF, Docs
Download Now
Alexander Grothendieck introduced many concepts into algebraic geometry; they turned out to be astoundingly powerful and productive and truly revolutionized the subject. Grothendieck sketched his new theories in a series of talks at the Seminaire Bourbaki between 1957 and 1962 and collected his write-ups in a volume entitled ``Fondements de la Geometrie Algebrique,'' known as FGA. Much of FGA is now common knowledge; however, some of FGA is less well known, and its full scope is familiar to few. The present book resulted from the 2003 ``Advanced School in Basic Algebraic Geometry'' at the ICTP in Trieste, Italy. The book aims to fill in Grothendieck's brief sketches. There are four themes: descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. Most results are proved in full detail; furthermore, newer ideas are introduced to promote understanding, and many connections are drawn to newer developments. The main prerequisite is a thorough acquaintance with basic scheme theory. Thus this book is a valuable resource for anyone doing algebraic geometry.

The Shaping of Arithmetic after C F Gauss s Disquisitiones Arithmeticae

Author: Catherine Goldstein
Publisher: Springer Science & Business Media
ISBN: 3540347208
Format: PDF, Mobi
Download Now
Since its publication, C.F. Gauss's Disquisitiones Arithmeticae (1801) has acquired an almost mythical reputation, standing as an ideal of exposition in notation, problems and methods; as a model of organisation and theory building; and as a source of mathematical inspiration. Eighteen authors - mathematicians, historians, philosophers - have collaborated in this volume to assess the impact of the Disquisitiones, in the two centuries since its publication.

Arithmetic Differential Equations

Author: Alexandru Buium
Publisher: American Mathematical Soc.
ISBN: 0821838628
Format: PDF, Mobi
Download Now
This research monograph develops an arithmetic analogue of the theory of ordinary differential equations: functions are replaced here by integer numbers, the derivative operator is replaced by a ``Fermat quotient operator'', and differential equations (viewed as functions on jet spaces) are replaced by ``arithmetic differential equations''. The main application of this theory concerns the construction and study of quotients of algebraic curves by correspondences with infinite orbits. Any such quotient reduces to a point in usual algebraic geometry. But many quotients as above cease to be trivial (and become quite interesting) if one enlarges algebraic geometry by using arithmetic differential equations in place of algebraic equations. The book partly follows a series of papers written by the author; however, a substantial part of the material presented here has never been published before. For most of the book the only prerequisites are the basic facts of algebraic geometry and number theory.

The Ricci Flow in Riemannian Geometry

Author: Ben Andrews
Publisher: Springer Science & Business Media
ISBN: 3642162851
Format: PDF, ePub, Docs
Download Now
Focusing on Hamilton's Ricci flow, this volume begins with a detailed discussion of the required aspects of differential geometry. The discussion also includes existence and regularity theory, compactness theorems for Riemannian manifolds, and much more.

Applying the Classification of Finite Simple Groups A User s Guide

Author: Stephen D. Smith
Publisher: American Mathematical Soc.
ISBN: 1470442914
Format: PDF, Mobi
Download Now
Classification of Finite Simple Groups (CFSG) is a major project involving work by hundreds of researchers. The work was largely completed by about 1983, although final publication of the “quasithin” part was delayed until 2004. Since the 1980s, CFSG has had a huge influence on work in finite group theory and in many adjacent fields of mathematics. This book attempts to survey and sample a number of such topics from the very large and increasingly active research area of applications of CFSG. The book is based on the author's lectures at the September 2015 Venice Summer School on Finite Groups. With about 50 exercises from original lectures, it can serve as a second-year graduate course for students who have had first-year graduate algebra. It may be of particular interest to students looking for a dissertation topic around group theory. It can also be useful as an introduction and basic reference; in addition, it indicates fuller citations to the appropriate literature for readers who wish to go on to more detailed sources.