CMOS Circuit Design for RF Sensors

Author: Gunnar Gudnason
Publisher: Springer Science & Business Media
ISBN: 0306475286
Format: PDF, ePub
Download Now
This useful reference is about CMOS circuit design for sensor and actuators to be used in wireless RF systems. It places special focus on the power and data link in a wireless system with transducers powered via the RF link, presenting novel principles and methods.

Circuit Design for Wireless Communications

Author: Kong-Pang Pun
Publisher: Springer Science & Business Media
ISBN: 1475737378
Format: PDF, Mobi
Download Now
This is the first book focusing on the subject of image rejection in wireless receiver design, which is crucial for the current and next generation mobile terminals. It serves as a very useful reference for wireless design engineers, researchers and students.

Low Voltage CMOS Log Companding Analog Design

Author: Francisco Serra-Graells
Publisher: Springer Science & Business Media
ISBN: 0306487217
Format: PDF, Mobi
Download Now
Low-Voltage CMOS Log Companding Analog Design presents in detail state-of-the-art analog circuit techniques for the very low-voltage and low-power design of systems-on-chip in CMOS technologies. The proposed strategy is mainly based on two bases: the Instantaneous Log Companding Theory, and the MOSFET operating in the subthreshold region. The former allows inner compression of the voltage dynamic-range for very low-voltage operation, while the latter is compatible with CMOS technologies and suitable for low-power circuits. The required background on the specific modeling of the MOS transistor for Companding is supplied at the beginning. Following this general approach, a complete set of CMOS basic building blocks is proposed and analyzed for a wide variety of analog signal processing. In particular, the covered areas include: amplification and AGC, arbitrary filtering, PTAT generation, and pulse duration modulation (PDM). For each topic, several case studies are considered to illustrate the design methodology. Also, integrated examples in 1.2um and 0.35um CMOS technologies are reported to verify the good agreement between design equations and experimental data. The resulting analog circuit topologies exhibit very low-voltage (i.e. 1V) and low-power (few tenths of uA) capabilities. Apart from these specific design examples, a real industrial application in the field of hearing aids is also presented as the main demonstrator of all the proposed basic building blocks. This system-on-chip exhibits true 1V operation, high flexibility through digital programmability and very low-power consumption (about 300uA including the Class-D amplifier). As a result, the reported ASIC can meet the specifications of a complete family of common hearing aid models. In conclusion, this book is addressed to both industry ASIC designers who can apply its contents to the synthesis of very low-power systems-on-chip in standard CMOS technologies, as well as to the teachers of modern circuit design in electronic engineering.

Advanced Design Techniques for RF Power Amplifiers

Author: Anna N. Rudiakova
Publisher: Springer Science & Business Media
ISBN: 1402046391
Format: PDF
Download Now
Advanced Design Techniques for RF Power Amplifiers provides a deep analysis of theoretical aspects, modelling, and design strategies of RF high-efficiency power amplifiers. The book can be used as a guide by scientists and engineers dealing with the subject and as a text book for graduate and postgraduate students. Although primarily intended for skilled readers, it provides an excellent quick start for beginners.

IQ Calibration Techniques for CMOS Radio Transceivers

Author: Sao-Jie Chen
Publisher: Springer Science & Business Media
ISBN: 1402050836
Format: PDF
Download Now
The 802.11n wireless standard uses 64-state quadrature amplitude modulation (64-QAM) to achieve higher spectral efficiency. Consequently, the transmitter and receiver require a higher signal to noise ratio with the same level of error rate performance. This book offers a fully-analog compensation technique without baseband circuitry to control the calibration process. Using an 802.11g transceiver design as an example, it describes in detail an auto-calibration mechanism for I/Q gains and phases imbalance.

High Linearity CMOS RF Front End Circuits

Author: Yongwang Ding
Publisher: Springer Science & Business Media
ISBN: 0387238026
Format: PDF
Download Now
This book focuses on high performance radio frequency integrated circuits (RF IC) design in CMOS. 1. Development of radio frequency ICs Wireless communications has been advancing rapidly in the past two decades. Many high performance systems have been developed, such as cellular systems (AMPS, GSM, TDMA, CDMA, W-CDMA, etc. ), GPS system (global po- tioning system) and WLAN (wireless local area network) systems. The rapid growth of VLSI technology in both digital circuits and analog circuits provides benefits for wireless communication systems. Twenty years ago not many p- ple could imagine millions of transistors in a single chip or a complete radio for size of a penny. Now not only complete radios have been put in a single chip, but also more and more functions have been realized by a single chip and at a much lower price. A radio transmits and receives electro-magnetic signals through the air. The signals are usually transmitted on high frequency carriers. For example, a t- ical voice signal requires only 30 Kilohertz bandwidth. When it is transmitted by a FM radio station, it is often carried by a frequency in the range of tens of megahertz to hundreds of megahertz. Usually a radio is categorized by its carrier frequency, such as 900 MHz radio or 5 GHz radio. In general, the higher the carrier frequency, the better the directivity, but the more difficult the radio design.

Automated Calibration of Modulated Frequency Synthesizers

Author: Dan McMahill
Publisher: Springer Science & Business Media
ISBN: 0792375890
Format: PDF, ePub, Mobi
Download Now
In recent years, there has been considerable interest in highly integrated, low power, portable wireless devices. There are three primary areas to be addressed when higher performance and lower power is desired. The first area is the device technology. Scaling of devices has realized steady improvements for many years. The second area is improved circuit design techniques. The final area is at the architectural level. This monograph focuses on the problem of low power GFSK/GMSK modulation and presents an architectural approach for improved performance. The new architecture is a modulated S-D fractional-N frequency synthesizer. The key innovation is an automatic calibration technique, which operates in the background. The availability of the calibration circuit makes high data rate, low power modulation possible. From the Foreword: "The key contribution of the work presented in this monograph is a technique for in service automatic calibration of the modulated frequency synthesizer by ensuring that the digital emphasis filter and analog loop filter characteristics are matched. The automatic calibration circuit operates while the transmitter is in service and compensates for process and temperature variation. GFSK and 4-GFSK modulation was demonstrated at data rates of 2.5 Mb/s and 5 Mb/s respectively at an RF output carrier frequency of 1.8 GHz. ... In addition, he presents some valuable tools for the practicing engineer in this field." by Charles G. Sodini

Data Converters for Wireless Standards

Author: Chunlei Shi
Publisher: Springer Science & Business Media
ISBN: 0792376234
Format: PDF, Mobi
Download Now
Wireless communication is witnessing tremendous growth with p- liferation of different standards covering wide, local and personal area networks (WAN, LAN and PAN). The trends call for designs that - low 1) smooth migration to future generations of wireless standards with higher data rates for multimedia applications, 2) convergence of wireless services allowing access to different standards from the same wireless device, 3) inter-continental roaming. This requires designs that work across multiple wireless standards, can easily be reused, achieve maximum hardware share at a minimum power consumption levels p- ticularly for mobile battery-operated devices. All this calls for higher levels of system integration of both the radio and the digital baseband parts. It also calls for radio design solutions with mixed signal strategies that take full advantage of technology sca- down by moving functions, such as channel select filtering, modulation and demodulation, to the digital domain. Central to achieving these goals is the design of data converters for these emerging standards in the context of technology and market trends.

Nanoelectronic Mixed Signal System Design

Author: Saraju Mohanty
Publisher: McGraw Hill Professional
ISBN: 0071823034
Format: PDF, Docs
Download Now
Covering both the classical and emerging nanoelectronic technologies being used in mixed-signal design, this book addresses digital, analog, and memory components. Winner of the Association of American Publishers' 2016 PROSE Award in the Textbook/Physical Sciences & Mathematics category. Nanoelectronic Mixed-Signal System Design offers professionals and students a unified perspective on the science, engineering, and technology behind nanoelectronics system design. Written by the director of the NanoSystem Design Laboratory at the University of North Texas, this comprehensive guide provides a large-scale picture of the design and manufacturing aspects of nanoelectronic-based systems. It features dual coverage of mixed-signal circuit and system design, rather than just digital or analog-only. Key topics such as process variations, power dissipation, and security aspects of electronic system design are discussed. Top-down analysis of all stages--from design to manufacturing Coverage of current and developing nanoelectronic technologies--not just nano-CMOS Describes the basics of nanoelectronic technology and the structure of popular electronic systems Reveals the techniques required for design excellence and manufacturability