CMOS Circuit Design for RF Sensors

Author: Gunnar Gudnason
Publisher: Springer Science & Business Media
ISBN: 0306475286
Format: PDF, Kindle
Download Now
This useful reference is about CMOS circuit design for sensor and actuators to be used in wireless RF systems. It places special focus on the power and data link in a wireless system with transducers powered via the RF link, presenting novel principles and methods.

Analog Design Essentials

Author: Willy M Sansen
Publisher: Springer Science & Business Media
ISBN: 0387257470
Format: PDF, ePub, Mobi
Download Now
This unique book contains all topics of importance to the analog designer which are essential to obtain sufficient insights to do a thorough job. The book starts with elementary stages in building up operational amplifiers. The synthesis of opamps is covered in great detail. Many examples are included, operating at low supply voltages. Chapters on noise, distortion, filters, ADC/DACs and oscillators follow. These are all based on the extensive amount of teaching that the author has carried out world-wide.

Energy Efficient Smart Temperature Sensors in CMOS Technology

Author: Kamran Souri
Publisher: Springer
ISBN: 3319623079
Format: PDF, ePub, Docs
Download Now
This book describes the design and implementation of energy-efficient smart (digital output) temperature sensors in CMOS technology. To accomplish this, a new readout topology, namely the zoom-ADC, is presented. It combines a coarse SAR-ADC with a fine Sigma-Delta (SD) ADC. The digital result obtained from the coarse ADC is used to set the reference levels of the SD-ADC, thereby zooming its full-scale range into a small region around the input signal. This technique considerably reduces the SD-ADC’s full-scale range, and notably relaxes the number of clock cycles needed for a given resolution, as well as the DC-gain and swing of the loop-filter. Both conversion time and power-efficiency can be improved, which results in a substantial improvement in energy-efficiency. Two BJT-based sensor prototypes based on 1st-order and 2nd-order zoom-ADCs are presented. They both achieve inaccuracies of less than ±0.2°C over the military temperature range (-55°C to 125°C). A prototype capable of sensing temperatures up to 200°C is also presented. As an alternative to BJTs, sensors based on dynamic threshold MOSTs (DTMOSTs) are also presented. It is shown that DTMOSTs are capable of achieving low inaccuracy (±0.4°C over the military temperature range) as well as sub-1V operation, making them well suited for use in modern CMOS processes.

Low Power Design Essentials

Author: Jan Rabaey
Publisher: Springer Science & Business Media
ISBN: 9780387717135
Format: PDF, ePub, Docs
Download Now
This book contains all the topics of importance to the low power designer. It first lays the foundation and then goes on to detail the design process. The book also discusses such special topics as power management and modal design, ultra low power, and low power design methodology and flows. In addition, coverage includes projections of the future and case studies.

Low Voltage CMOS Log Companding Analog Design

Author: Francisco Serra-Graells
Publisher: Springer Science & Business Media
ISBN: 0306487217
Format: PDF
Download Now
Low-Voltage CMOS Log Companding Analog Design presents in detail state-of-the-art analog circuit techniques for the very low-voltage and low-power design of systems-on-chip in CMOS technologies. The proposed strategy is mainly based on two bases: the Instantaneous Log Companding Theory, and the MOSFET operating in the subthreshold region. The former allows inner compression of the voltage dynamic-range for very low-voltage operation, while the latter is compatible with CMOS technologies and suitable for low-power circuits. The required background on the specific modeling of the MOS transistor for Companding is supplied at the beginning. Following this general approach, a complete set of CMOS basic building blocks is proposed and analyzed for a wide variety of analog signal processing. In particular, the covered areas include: amplification and AGC, arbitrary filtering, PTAT generation, and pulse duration modulation (PDM). For each topic, several case studies are considered to illustrate the design methodology. Also, integrated examples in 1.2um and 0.35um CMOS technologies are reported to verify the good agreement between design equations and experimental data. The resulting analog circuit topologies exhibit very low-voltage (i.e. 1V) and low-power (few tenths of uA) capabilities. Apart from these specific design examples, a real industrial application in the field of hearing aids is also presented as the main demonstrator of all the proposed basic building blocks. This system-on-chip exhibits true 1V operation, high flexibility through digital programmability and very low-power consumption (about 300uA including the Class-D amplifier). As a result, the reported ASIC can meet the specifications of a complete family of common hearing aid models. In conclusion, this book is addressed to both industry ASIC designers who can apply its contents to the synthesis of very low-power systems-on-chip in standard CMOS technologies, as well as to the teachers of modern circuit design in electronic engineering.

Efficient Sensor Interfaces Advanced Amplifiers and Low Power RF Systems

Author: Kofi A.A. Makinwa
Publisher: Springer
ISBN: 3319211854
Format: PDF, Kindle
Download Now
This book is based on the 18 tutorials presented during the 24th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of efficient sensor interfaces and low-power RF systems. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.

Design of CMOS RFIC Ultra Wideband Impulse Transmitters and Receivers

Author: Cam Nguyen
Publisher: Springer
ISBN: 3319531077
Format: PDF, Kindle
Download Now
This book presents the design of ultra-wideband (UWB) impulse-based transmitter and receiver frontends, operating within the 3.1-10.6 GHz frequency band, using CMOS radio-frequency integrated-circuits (RFICs). CMOS RFICs are small, cheap, low power devices, better suited for direct integration with digital ICs as compared to those using III-V compound semiconductor devices. CMOS RFICs are thus very attractive for RF systems and, in fact, the principal choice for commercial wireless markets. The book comprises seven chapters. The first chapter gives an introduction to UWB technology and outlines its suitability for high resolution sensing and high-rate, short-range ad-hoc networking and communications. The second chapter provides the basics of CMOS RFICs needed for the design of the UWB RFIC transmitter and receiver presented in this book. It includes the design fundamentals, lumped and distributed elements for RFIC, layout, post-layout simulation, and measurement. The third chapter discusses the basics of UWB systems including UWB advantages and applications, signals, basic modulations, transmitter and receiver frontends, and antennas. The fourth chapter addresses the design of UWB transmitters including an overview of basic components, design of pulse generator, BPSK modulator design, and design of a UWB tunable transmitter. Chapter 5 presents the design of UWB receivers including the design of UWB low-noise amplifiers, correlators, and a UWB 1 receiver. Chapter 6 covers the design of a UWB uniplanar antenna. Finally, a summary and conclusion is given in Chapter 7.

Design Simulation and Applications of Inductors and Transformers for Si RF ICs

Author: Ali M. Niknejad
Publisher: Springer Science & Business Media
ISBN: 0306470381
Format: PDF, Kindle
Download Now
The modern wireless communication industry has put great demands on circuit designers for smaller, cheaper transceivers in the gigahertz frequency range. One tool which has assisted designers in satisfying these requirements is the use of on-chip inductiveelements (inductors and transformers) in silicon (Si) radio-frequency (RF) integrated circuits (ICs). These elements allow greatly improved levels of performance in Si monolithic low-noise amplifiers, power amplifiers, up-conversion and down-conversion mixers and local oscillators. Inductors can be used to improve the intermodulation distortion performance and noise figure of small-signal amplifiers and mixers. In addition, the gain of amplifier stages can be enhanced and the realization of low-cost on-chip local oscillators with good phase noise characteristics is made feasible. In order to reap these benefits, it is essential that the IC designer be able to predict and optimize the characteristics of on-chip inductiveelements. Accurate knowledge of inductance values, quality factor (Q) and the influence of ad- cent elements (on-chip proximity effects) and substrate losses is essential. In this book the analysis, modeling and application of on-chip inductive elements is considered. Using analyses based on Maxwells equations, an accurate and efficient technique is developed to model these elements over a wide frequency range. Energy loss to the conductive substrate is modeled through several mechanisms, including electrically induced displacement and conductive c- rents and by magnetically induced eddy currents. These techniques have been compiled in a user-friendly software tool ASITIC (Analysis and Simulation of Inductors and Transformers for Integrated Circuits).

Analog Circuit Design

Author: Johan Huijsing
Publisher: Springer Science & Business Media
ISBN: 0306479508
Format: PDF, ePub, Mobi
Download Now
This book contains the revised contributions of the 18 tutorial speakers at the tenth AACD 2001 in Noordwijk, the Netherlands, April 24-26. The conference was organized by Marcel Pelgrom, Philips Research Eindhoven, and Ed van Tuijl, Philips Research Eindhoven and Twente University, Enschede, the Netherlands. The program committee consisted of: Johan Huijsing, Delft University of Technology Arthur van Roermund, Eindhoven University of Technology Michiel Steyaert, Catholic University of Leuven The program was concentrated around three main topics in analog circuit design. Each of these topics has been covered by six papers. The three main topics are: Scalable Analog Circuit Design High-Speed D/A Converters RF Power Amplifiers Other topics covered before in this series: 2000 High-Speed Analog-to-Digital Converters Mixed Signal Design PLL’s and Synthesizers 1999 XDSL and other Communication Systems RF MOST Models Integrated Filters and Oscillators 1998 1-Volt- Electronics Mixed-Mode Systems Low-Noise and RF Power Amplifiers for Telecommunication vii viii 1997 RF A-D Converters Sensor and Actuator Interfaces Low-Noise Oscillators, PLL’s and Synthesizers 1996 RF CMOS Circuit Design Bandpass Sigma Delta and other Converters Translinear Circuits 1995 Low-Noise, Low-Power, Low-Voltage Mixed Mode with CAD Trials Voltage, Current and Time References 1994 Low-Power Low Voltage Integrated Filters Smart power 1993 Mixed-Mode A/D Design Sensor Interfaces Communications Circuits 1992 Op Amps ADC’s Analog CAD We hope to serve the analog design community with these series of books and plan to continue this series in the future. Johan H.