Compendium to Radiation Physics for Medical Physicists

Author: Ervin B. Podgorsak
Publisher: Springer Science & Business Media
ISBN: 3642201865
Format: PDF
Download Now
This exercise book contains 300 typical problems and exercises in modern physics and radiation physics with complete solutions, detailed equations and graphs. This textbook is linked directly with the textbook "Radiation Physics for Medical Physicists", Springer (2010) but can also be used in combination with other related textbooks. For ease of use, this textbook has exactly the same organizational layout (14 chapters, 128 sections) as the "Radiation Physics for Medical Physicists" textbook and each section is covered by at least one problem with solution given. Equations, figures and tables are cross-referenced between the two books. It is the only large compilation of textbook material and associated solved problems in medical physics, radiation physics, and biophysics.

Radiation Physics for Medical Physicists

Author: Ervin B. Podgorsak
Publisher: Springer
ISBN: 3319253824
Format: PDF, ePub, Mobi
Download Now
This textbook summarizes the basic knowledge of atomic, nuclear, and radiation physics that professionals working in medical physics and biomedical engineering need for efficient and safe use of ionizing radiation in medicine. Concentrating on the underlying principles of radiation physics, the textbook covers the prerequisite knowledge for medical physics courses on the graduate and post-graduate levels in radiotherapy physics, radiation dosimetry, imaging physics, and health physics, thus providing the link between elementary undergraduate physics and the intricacies of four medical physics specialties: diagnostic radiology physics, nuclear medicine physics, radiation oncology physics, and health physics. To recognize the importance of radiation dosimetry to medical physics three new chapters have been added to the 14 chapters of the previous edition. Chapter 15 provides a general introduction to radiation dosimetry. Chapter 16 deals with absolute radiation dosimetry systems that establish absorbed dose or some other dose related quantity directly from the signal measured by the dosimeter. Three absolute dosimetry techniques are known and described in detail: (i) calorimetric; (ii) chemical (Fricke), and (iii) ionometric. Chapter 17 deals with relative radiation dosimetry systems that rely on a previous dosimeter calibration in a known radiation field. Many relative radiation dosimetry systems have been developed to date and four most important categories used routinely in medicine and radiation protection are described in this chapter: (i) Ionometric dosimetry; (ii) Luminescence dosimetry; (iii) Semiconductor dosimetry; and (iv) Film dosimetry. The book is intended as a textbook for a radiation physics course in academic medical physics graduate programs as well as a reference book for candidates preparing for certification examinations in medical physics sub-specialties. It may also be of interest to many professionals, not only physicists, who in their daily occupations deal with various aspects of medical physics or radiation physics and have a need or desire to improve their understanding of radiation physics.

Monte Carlo Methods for Radiation Transport

Author: Oleg N. Vassiliev
Publisher: Springer
ISBN: 3319441418
Format: PDF, ePub
Download Now
This book is a guide to the use of Monte Carlo techniques in radiation transport. This topic is of great interest for medical physicists. Praised as a "gold standard" for accurate radiotherapy dose calculations, Monte Carlo has stimulated a high level of research activity that has produced thousands of papers within the past few years. The book is designed primarily to address the needs of an academically inclined medical physicist who wishes to learn the technique, as well as experienced users of standard Monte Carlo codes who wish to gain insight into the underlying mathematics of Monte Carlo algorithms. The book focuses on the fundamentals—giving full attention to and explaining the very basic concepts. It also includes advanced topics and covers recent advances such as transport of charged particles in magnetic fields and the grid-based solvers of the Boltzmann equation.

Radiation Physics for Medical Physicists

Author: Ervin B. Podgorsak
Publisher: Springer
ISBN: 3319253824
Format: PDF, ePub, Mobi
Download Now
This textbook summarizes the basic knowledge of atomic, nuclear, and radiation physics that professionals working in medical physics and biomedical engineering need for efficient and safe use of ionizing radiation in medicine. Concentrating on the underlying principles of radiation physics, the textbook covers the prerequisite knowledge for medical physics courses on the graduate and post-graduate levels in radiotherapy physics, radiation dosimetry, imaging physics, and health physics, thus providing the link between elementary undergraduate physics and the intricacies of four medical physics specialties: diagnostic radiology physics, nuclear medicine physics, radiation oncology physics, and health physics. To recognize the importance of radiation dosimetry to medical physics three new chapters have been added to the 14 chapters of the previous edition. Chapter 15 provides a general introduction to radiation dosimetry. Chapter 16 deals with absolute radiation dosimetry systems that establish absorbed dose or some other dose related quantity directly from the signal measured by the dosimeter. Three absolute dosimetry techniques are known and described in detail: (i) calorimetric; (ii) chemical (Fricke), and (iii) ionometric. Chapter 17 deals with relative radiation dosimetry systems that rely on a previous dosimeter calibration in a known radiation field. Many relative radiation dosimetry systems have been developed to date and four most important categories used routinely in medicine and radiation protection are described in this chapter: (i) Ionometric dosimetry; (ii) Luminescence dosimetry; (iii) Semiconductor dosimetry; and (iv) Film dosimetry. The book is intended as a textbook for a radiation physics course in academic medical physics graduate programs as well as a reference book for candidates preparing for certification examinations in medical physics sub-specialties. It may also be of interest to many professionals, not only physicists, who in their daily occupations deal with various aspects of medical physics or radiation physics and have a need or desire to improve their understanding of radiation physics.

An Introduction to Medical Physics

Author: Muhammad Maqbool
Publisher: Springer
ISBN: 3319615408
Format: PDF, Mobi
Download Now
This book begins with the basic terms and definitions and takes a student, step by step, through all areas of medical physics. The book covers radiation therapy, diagnostic radiology, dosimetry, radiation shielding, and nuclear medicine, all at a level suitable for undergraduates. This title not only describes the basics concepts of the field, but also emphasizes numerical and mathematical problems and examples. Students will find An Introduction to Medical Physics to be an indispensible resource in preparations for further graduate studies in the field.

Radiation Oncology Physics

Author: Ervin B. Podgoršak
Publisher: IAEA
ISBN:
Format: PDF, Mobi
Download Now
This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.

Physics for Radiation Protection

Author: James E. Martin
Publisher: John Wiley & Sons
ISBN: 3527667083
Format: PDF, Mobi
Download Now
A practical guide to the basic physics that radiation protection professionals need A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided. Coverage includes: The atom as an energy system An overview of the major discoveries in radiation physics Extensive discussion of radioactivity, including sources and materials Nuclear interactions and processes of radiation dose Calculational methods for radiation exposure, dose, and shielding Nuclear fission and production of activation and fission products Specialty topics ranging from nuclear criticality and applied statistics to X rays Extensive and current resource data cross-referenced to standard compendiums Extensive appendices and more than 400 figures This complete discussion of the basic concepts allows readers to advance their professional skills.

A Cultural History of Physics

Author: Károly Simonyi
Publisher: CRC Press
ISBN: 1439865116
Format: PDF, ePub
Download Now
While the physical sciences are a continuously evolving source of technology and of understanding about our world, they have become so specialized and rely on so much prerequisite knowledge that for many people today the divide between the sciences and the humanities seems even greater than it was when C. P. Snow delivered his famous 1959 lecture, "The Two Cultures." In A Cultural History of Physics, Hungarian scientist and educator Károly Simonyi succeeds in bridging this chasm by describing the experimental methods and theoretical interpretations that created scientific knowledge, from ancient times to the present day, within the cultural environment in which it was formed. Unlike any other work of its kind, Simonyi’s seminal opus explores the interplay of science and the humanities to convey the wonder and excitement of scientific development throughout the ages. These pages contain an abundance of excerpts from original resources, a wide array of clear and straightforward explanations, and an astonishing wealth of insight, revealing the historical progress of science and inviting readers into a dialogue with the great scientific minds that shaped our current understanding of physics. Beautifully illustrated, accurate in its scientific content and broad in its historical and cultural perspective, this book will be a valuable reference for scholars and an inspiration to aspiring scientists and humanists who believe that science is an integral part of our culture.

Elementary differential equations

Author: William E. Boyce
Publisher: Wiley
ISBN: 9780471433392
Format: PDF
Download Now
This revision of Boyce & DiPrima's text maintains its classic strengths: a contemporary approach with flexible chapter construction, clear exposition, and outstanding problems. Like previous editions, this revision is written from the viewpoint of the applied mathematician, focusing both on the theory and the practical applications of Differential Equations as they apply to engineering and the sciences. A perennial best seller designed for engineers and scientists who need to use Elementary Differential Equations in their work and studies. The CD-ROM includes: The award-winning ODE Architect software. The software's 14 modules enable you to build and solve your own ODEs, and to use simulations and multimedia to develop detailed mathematical models and concepts in a truly interactive environment. The ODE Architect Companion. The Companion extends the ideas featured in each multimedia module. The web-based learning tools include: Review & Study Guidelines. The Chapter Review Guidelines will help you prepare for quizzes and exams. Online Review Quizzes. The quizzes enable you to test your knowledge of key concepts and provide diagnostic feedback that references appropriate sections in the text. PowerPoint Slides. You can print these slides out for in-class note taking. Getting Started with ODE Architect. This guide will help you get up-and-running with ODE Architect's simulations and multimedia.

Measurement and Detection of Radiation Fourth Edition

Author: Nicholas Tsoulfanidis
Publisher: CRC Press
ISBN: 1482215489
Format: PDF, ePub, Docs
Download Now
A Sound Introduction to Radiation Detection and Measurement for Newcomers to Nuclear Science and Engineering Since the publication of the bestselling third edition, there have been advances in the field of radiation detection, most notably in practical applications. Incorporating these important developments, Measurement and Detection of Radiation, Fourth Edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. New to the Fourth Edition New chapters on nuclear forensics and nuclear medicine instrumentation, covering basic principles and applications as well as open-ended problems that encourage more in-depth research Updated references and bibliographies New and expanded problems As useful to students and nuclear professionals as its popular predecessors, this fourth edition continues to carefully explain the latest radiation detector technology and measurement techniques. It also discusses the correct ways to perform measurements and analyze results following current health physics procedures.