Computational Geometry

Author: Mark de Berg
Publisher: Springer Science & Business Media
ISBN: 3540779736
Format: PDF, Kindle
Download Now
This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.

Computational Geometry

Author: Mark de Berg
Publisher: Springer Science & Business Media
ISBN: 9783540656203
Format: PDF, Kindle
Download Now
Algorithms are the focus of this introduction to computational geometry, which presents techniques applied to robotics, graphics, CAD/CAM, and geographic information systems.

Computational Geometry

Author: Mark de Berg
Publisher: Springer Science & Business Media
ISBN: 9783540612704
Format: PDF, ePub, Mobi
Download Now
This all-new introduction to computational geometry is a textbook for high-level undergraduate and low-level graduate courses. The focus is on algorithms and hence the book is well suited for students in computer science and engineering. Motivation is provided from the application areas: all solutions and techniques of computational geometry are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. For students this motivation will be especially welcome. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement. All the basic techniques and topics from computational geometry, as well as several more advanced topics, are covered.

Discrete and Computational Geometry

Author: Satyan L. Devadoss
Publisher: Princeton University Press
ISBN: 9781400838981
Format: PDF, Mobi
Download Now
Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only). To obtain access, please e-mail: [email protected]

Computational Geometry

Author: Franco P. Preparata
Publisher: Springer Science & Business Media
ISBN: 1461210984
Format: PDF, Mobi
Download Now
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2

Handbook of Computational Geometry

Author: J.R. Sack
Publisher: Elsevier
ISBN: 9780080529684
Format: PDF, Docs
Download Now
Computational Geometry is an area that provides solutions to geometric problems which arise in applications including Geographic Information Systems, Robotics and Computer Graphics. This Handbook provides an overview of key concepts and results in Computational Geometry. It may serve as a reference and study guide to the field. Not only the most advanced methods or solutions are described, but also many alternate ways of looking at problems and how to solve them.

Handbook of Discrete and Computational Geometry Second Edition

Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 9781420035315
Format: PDF
Download Now
While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies

Algorithms in Combinatorial Geometry

Author: Herbert Edelsbrunner
Publisher: Springer Science & Business Media
ISBN: 3642615686
Format: PDF, Mobi
Download Now
Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.

Computational Geometry Methods Algorithms and Applications

Author: Hanspeter Bieri
Publisher: Springer Science & Business Media
ISBN: 9783540548911
Format: PDF, ePub, Mobi
Download Now
Radiocarbon After Four Decades: An Interdisciplinary Perspective commemorates the 40th anniversary of radiocarbon dating. The volume presents discussions of every aspect of this dating technique, as well as chronicles of its development and views of future advancements and applications. All of the 64 authors played major roles in establishment, development or application of this revolutionary scientific tool. The 35 chapters provide a solid foundation in the essential topics of radiocarbon dating: Historical Perspectives; The Natural Carbon Cycle; Instrumentation and Sample Preparation; Hydrology; Old World Archaeology; New World Archaeology; Earth Sciences; and Biomedical Applications.

Guide to Computational Geometry Processing

Author: J. Andreas Bærentzen
Publisher: Springer Science & Business Media
ISBN: 1447140753
Format: PDF, ePub
Download Now
This book reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. Features: presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations; reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces; examines techniques for computing curvature from polygonal meshes; describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification; discusses point location databases and convex hulls of point sets; investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction; provides additional material at a supplementary website; includes self-study exercises throughout the text.