## Computational Statistics Handbook with MATLAB Third Edition

Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 1466592745
Format: PDF, ePub, Mobi

A Strong Practical Focus on Applications and Algorithms Computational Statistics Handbook with MATLAB®, Third Edition covers today’s most commonly used techniques in computational statistics while maintaining the same philosophy and writing style of the bestselling previous editions. The text keeps theoretical concepts to a minimum, emphasizing the implementation of the methods. New to the Third Edition This third edition is updated with the latest version of MATLAB and the corresponding version of the Statistics and Machine Learning Toolbox. It also incorporates new sections on the nearest neighbor classifier, support vector machines, model checking and regularization, partial least squares regression, and multivariate adaptive regression splines. Web Resource The authors include algorithmic descriptions of the procedures as well as examples that illustrate the use of algorithms in data analysis. The MATLAB code, examples, and data sets are available online.

## Exploratory Data Analysis with MATLAB Third Edition

Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 1315349841
Format: PDF, ePub, Mobi

Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data

## Statistics in MATLAB

Author: MoonJung Cho
Publisher: CRC Press
ISBN: 1466596570
Format: PDF

Fulfilling the need for a practical user’s guide, Statistics in MATLAB: A Primer provides an accessible introduction to the latest version of MATLAB® and its extensive functionality for statistics. Assuming a basic knowledge of statistics and probability as well as a fundamental understanding of linear algebra concepts, this book: Covers capabilities in the main MATLAB package, the Statistics Toolbox, and the student version of MATLAB Presents examples of how MATLAB can be used to analyze data Offers access to a companion website with data sets and additional examples Contains figures and visual aids to assist in application of the software Explains how to determine what method should be used for analysis Statistics in MATLAB: A Primer is an ideal reference for undergraduate and graduate students in engineering, mathematics, statistics, economics, biostatistics, and computer science. It is also appropriate for a diverse professional market, making it a valuable addition to the libraries of researchers in statistics, computer science, data mining, machine learning, image analysis, signal processing, and engineering.

## Music Data Analysis

Author: Claus Weihs
Publisher: CRC Press
ISBN: 1498719570
Format: PDF, Mobi

This book provides a comprehensive overview of music data analysis, from introductory material to advanced concepts. It covers various applications including transcription and segmentation as well as chord and harmony, instrument and tempo recognition. It also discusses the implementation aspects of music data analysis such as architecture, user interface and hardware. It is ideal for use in university classes with an interest in music data analysis. It also could be used in computer science and statistics as well as musicology.

## Probability and Statistics for Computer Scientists Second Edition

Author: Michael Baron
Publisher: CRC Press
ISBN: 1498760600
Format: PDF, Docs

Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make optimal decisions under uncertainty; model and evaluate computer systems and networks; and prepare for advanced probability-based courses. Written in a lively style with simple language, this classroom-tested book can now be used in both one- and two-semester courses. New to the Second Edition Axiomatic introduction of probability Expanded coverage of statistical inference, including standard errors of estimates and their estimation, inference about variances, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap More exercises at the end of each chapter Additional MATLAB® codes, particularly new commands of the Statistics Toolbox In-Depth yet Accessible Treatment of Computer Science-Related Topics Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET). Encourages Practical Implementation of Skills Using simple MATLAB commands (easily translatable to other computer languages), the book provides short programs for implementing the methods of probability and statistics as well as for visualizing randomness, the behavior of random variables and stochastic processes, convergence results, and Monte Carlo simulations. Preliminary knowledge of MATLAB is not required. Along with numerous computer science applications and worked examples, the text presents interesting facts and paradoxical statements. Each chapter concludes with a short summary and many exercises.

## Matlab

Author: Antonio Siciliano
Publisher: World Scientific Publishing Company
ISBN: 9813101202
Format: PDF

MATLAB is currently the language of technical computing most known and used in academia, industry and services. It is composed of a set of tools and a very large number of functions, graphics objects with associated properties and operators. The book begins by looking at the main tools, in particular the Desktop, the Command and History Window, the Editor and the Help Browser. The selected number of functions, graphics objects, related properties and operators, considered fundamental in MATLAB, is a unique and remarkable feature of this book. These basic elements are minutely treated both formally and through examples. The arrangement of every data type as an array is another prominent emphasis of the book. Numerical data used in advanced mathematics usually defined as vectors or matrices are only one example. Others include logical values, strings of characters, dates, images, etc. Standard programming structures, like the many patterns of user functions and of the flow controls, are highlighted. The basic elements of data visualization — the main graphics objects and their properties — are also carefully examined.

## A First Course in Machine Learning Second Edition

Author: Simon Rogers
Publisher: CRC Press
ISBN: 1498738540
Format: PDF, Kindle

## Bayesian Logical Data Analysis for the Physical Sciences

Author: Phil Gregory
Publisher: Cambridge University Press
ISBN: 113944428X
Format: PDF, Docs

Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estimates by many orders of magnitude. This book provides a clear exposition of the underlying concepts with many worked examples and problem sets. It also discusses implementation, including an introduction to Markov chain Monte-Carlo integration and linear and nonlinear model fitting. Particularly extensive coverage of spectral analysis (detecting and measuring periodic signals) includes a self-contained introduction to Fourier and discrete Fourier methods. There is a chapter devoted to Bayesian inference with Poisson sampling, and three chapters on frequentist methods help to bridge the gap between the frequentist and Bayesian approaches. Supporting Mathematica® notebooks with solutions to selected problems, additional worked examples, and a Mathematica tutorial are available at www.cambridge.org/9780521150125.

## Data Analysis and Graphics Using R

Author: John Maindonald
Publisher: Cambridge University Press
ISBN: 1139486675
Format: PDF

Discover what you can do with R! Introducing the R system, covering standard regression methods, then tackling more advanced topics, this book guides users through the practical, powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical display, and interpretation of data. The many worked examples, from real-world research, are accompanied by commentary on what is done and why. The companion website has code and datasets, allowing readers to reproduce all analyses, along with solutions to selected exercises and updates. Assuming basic statistical knowledge and some experience with data analysis (but not R), the book is ideal for research scientists, final-year undergraduate or graduate-level students of applied statistics, and practising statisticians. It is both for learning and for reference. This third edition expands upon topics such as Bayesian inference for regression, errors in variables, generalized linear mixed models, and random forests.

## Environmental Data Analysis with MatLab

Author: William Menke
ISBN: 0128045507
Format: PDF

Environmental Data Analysis with MatLab is a new edition that expands fundamentally on the original with an expanded tutorial approach, new crib sheets, and problem sets providing a clear learning path for students and researchers working to analyze real data sets in the environmental sciences. Since publication of the bestselling Environmental Data Analysis with MATLAB®, many advances have been made in environmental data analysis. One only has to consider the global warming debate to realize how critically important it is to be able to derive clear conclusions from often noisy data drawn from a broad range of sources. The work teaches the basics of the underlying theory of data analysis and then reinforces that knowledge with carefully chosen, realistic scenarios. MATLAB®, a commercial data processing environment, is used in these scenarios. Significant content is devoted to teaching how it can be effectively used in an environmental data analysis setting. This new edition, though written in a self-contained way, is supplemented with data and MATLAB® scripts that can be used as a data analysis tutorial. New features include boxed crib sheets to help identify major results and important formulas and give brief advice on how and when they should be used. Numerical derivatives and integrals are derived and illustrated. Includes log-log plots with further examples of their use. Discusses new datasets on precipitation and stream flow. Topical enhancement applies the chi-squared test to the results of the generalized least squares method. New coverage of cluster analysis and approximation techniques that are widely applied in data analysis, including Taylor Series and low-order polynomial approximations; non-linear least-squares with Newton’s method; and pre-calculation and updating techniques applicable to real time data acquisition. Provides a clear learning path for researchers and students using data analysis techniques which build upon one another, choosing the right order of presentation to substantially aid the reader in learning material Includes crib sheets to summarize the most important data analysis techniques, results, procedures, and formulas, serving to organize the material in such a way that its sequence is more apparent Uses real-world environmental examples and case studies formulated using the readily-available software environment in MATLAB® Includes log-log plots with further examples of their use