Conductor Insulator Quantum Phase Transitions

Author: Vladimir Dobrosavljevic
Publisher: Oxford University Press
ISBN: 0199592594
Format: PDF, Mobi
Download Now
When many particles come together how do they organize themselves? And what destroys this organization? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them. It captures the excitement and the controversies on topics at the forefront of research.

Understanding Quantum Phase Transitions

Author: Lincoln Carr
Publisher: CRC Press
ISBN: 1439802610
Format: PDF, Mobi
Download Now
Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivity and display fundamental aspects of quantum theory, such as strong correlations and entanglement. Over the last two decades, our understanding of QPTs has increased tremendously due to a plethora of experimental examples, powerful new numerical methods, and novel theoretical understanding of previously intractable quantum many-body problems. Understanding Quantum Phase Transitions organizes our current understanding of QPTs with an emphasis on examples from condensed matter physics. Bringing together 48 well known physicists involved with the theory and observation of QPTs, this unique work provides a thorough yet concise examination of the field. Each chapter takes readers through past discoveries right up through the latest research results, and then ends with open questions and unsolved problems. Part I treats new concepts and directions in QPTs, from dynamics through dissipation and entanglement, and includes introductory material suitable for scientists new to the field. Part II explores specific models, systems, and aspects of QPTs, including topological order, the Kondo lattice, the Jaynes-Cummings lattice, reduced dimensionality, finite-size effects and metastability, and QPTs in Bose-Einstein condensates. Part III covers experiments motivated by a deeper understanding of QPTs, including quantum dots, 2D electron systems, frustrated lattices in molecular antiferromagnets, heavy fermions, and ultracold atoms in optical lattices. Part IV presents advances in numerical methods used to study QPTs, including cluster Monte Carlo and the worm algorithm, matrix-product-state methods, and dynamical mean-field theory. Part V looks at the relevance of QPTs beyond condensed-matter physics, including their occurrence in neutron stars, the quark-gluon plasma, cavity QED systems, and string theory. Graduate students, post-doctoral researchers, and professional scientists who seek a deep knowledge of QPTs will all find this book very useful. Researchers in the field will enhance their appreciation of the incredible breadth of the subject in chapters covering material outside their specialties.

The Mott Metal Insulator Transition

Author: Florian Gebhard
Publisher: Springer Science & Business Media
ISBN: 3540614818
Format: PDF, ePub, Docs
Download Now
Little do we reliably know about the Mott transition, and we are far from a complete understanding of the metal --insulator transition due to electr- electron interactions. Mott summarized his basic ideas on the subject in his wonderful book Metal--Insulator nansitions that first appeared in 1974 11. 1). In his view, a Motk insulator displays a gap for charge-carrying excitations due to electron cowelations, whose importance is expressed by the presence of local magnetic moments regardless of whether or not they are ordered. Since the subject is far from being settled, different opinions on specific aspects of the Mott transition still persist. This book naturally embodies my own understanding of the phenomenon, inspired by the work of the late Sir Kevill Mott. The purpose of this book is twofold: first, to give a detailed presen- tion of the basic theoretical concopts for Mott insulators and, second, to test these ideas against the results from model calculations. For this purpose the Hubbard model and some of its derivatives are best suited. The Hubbard model describes a Mott transition with a mere minimum of tunable par- eters, and various exact statements and even exact solutions exist in certain limiting cases. Exact solutions not only allow us to test our basic ideas, but also help to assess the quality of approxin~ate theories for correlated electron systems.

Electrodynamics of Quantum Critical Conductors and Superconductors

Author: Uwe Santiago Pracht
Publisher: Springer
ISBN: 3319728024
Format: PDF, ePub, Docs
Download Now
This thesis presents and discusses recent optical low-temperature experiments on disordered NbN, granular Al thin-films, and the heavy-fermion compound CeCoIn5, offering a unified picture of quantum-critical superconductivity. It provides a concise introduction to the respective theoretical models employed to interpret the experimental results, and guides readers through in-depth calculations supplemented with supportive figures in order to both retrace the interpretations and span the bridge between experiment and state-of-the art theory.

Handbook on the Physics and Chemistry of Rare Earths

Author:
Publisher: Elsevier
ISBN: 0444637052
Format: PDF
Download Now
Handbook on the Physics and Chemistry of Rare Earths is a continuous series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science, and physics. The book's main emphasis is on rare earth elements [Sc, Y, and the lanthanides (La through Lu], but whenever relevant, information is also included on the closely related actinide elements. Individual chapters are comprehensive, broad, up-to-date critical reviews written by highly experienced, invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines and integrates both the fundamentals and applications of these elements and publishes two volumes a year. Presents up-to-date overviews of new developments in the field of rare earths, covering both their physics and chemistry Contains Individual chapters that are comprehensive and broad, with critical reviews Provides contributions from highly experienced, invited experts

Strongly Correlated Electrons in Two Dimensions

Author: Sergey Kravchenko
Publisher: CRC Press
ISBN: 9814745383
Format: PDF
Download Now
The properties of strongly correlated electrons confined in two dimensions are a forefront area of modern condensed matter physics. In the past two or three decades, strongly correlated electron systems have garnered a great deal of scientific interest due to their unique and often unpredictable behavior. Two of many examples are the metallic state and the metal–insulator transition discovered in 2D semiconductors: phenomena that cannot occur in noninteracting systems. Tremendous efforts have been made, in both theory and experiment, to create an adequate understanding of the situation; however, a consensus has still not been reached. Strongly Correlated Electrons in Two Dimensions compiles and details cutting-edge research in experimental and theoretical physics of strongly correlated electron systems by leading scientists in the field. The book covers recent theoretical work exploring the quantum criticality of Mott and Wigner–Mott transitions, experiments on the metal–insulator transition and related phenomena in clean and dilute systems, the effect of spin and isospin degrees of freedom on low-temperature transport in two dimensions, electron transport near the 2D Mott transition, experimentally observed temperature and magnetic field dependencies of resistivity in silicon-based systems with different levels of disorder, and microscopic theory of the interacting electrons in two dimensions. Edited by Sergey Kravchenko, a prominent experimentalist, this book will appeal to advanced graduate-level students and researchers specializing in condensed matter physics, nanophysics, and low-temperature physics, especially those involved in the science of strong correlations, 2D semiconductors, and conductor–insulator transitions.

Quantum Phase Transitions

Author: Subir Sachdev
Publisher: Cambridge University Press
ISBN: 9780521004541
Format: PDF, ePub
Download Now
The first book to describe the theory of quantum phase transitions in condensed matter systems.

Modern Theories of Many Particle Systems in Condensed Matter Physics

Author: Daniel C. Cabra
Publisher: Springer Science & Business Media
ISBN: 3642104495
Format: PDF, Kindle
Download Now
Condensed matter systems where interactions are strong are inherently difficult to analyze theoretically. The situation is particularly interesting in low-dimensional systems, where quantum fluctuations play a crucial role. Here, the development of non-perturbative methods and the study of integrable field theory have facilitated the understanding of the behavior of many quasi one- and two-dimensional strongly correlated systems. In view of the same rapid development that has taken place for both experimental and numerical techniques, as well as the emergence of novel testing-grounds such as cold atoms or graphene, the current understanding of strongly correlated condensed matter systems differs quite considerably from standard textbook presentations. The present volume of lecture notes aims to fill this gap in the literature by providing a collection of authoritative tutorial reviews, covering such topics as quantum phase transitions of antiferromagnets and cuprate-based high-temperature superconductors, electronic liquid crystal phases, graphene physics, dynamical mean field theory applied to strongly correlated systems, transport through quantum dots, quantum information perspectives on many-body physics, frustrated magnetism, statistical mechanics of classical and quantum computational complexity, and integrable methods in statistical field theory. As both graduate-level text and authoritative reference on this topic, this book will benefit newcomers and more experienced researchers in this field alike.

Advanced Solid State Physics

Author: Philip Phillips
Publisher: Cambridge University Press
ISBN: 1107493463
Format: PDF, ePub
Download Now
Providing an up-to-date and lucid presentation of phenomena across modern advanced-level solid state physics, this new edition builds on an elementary understanding to introduce students to the key research topics with the minimum of mathematics. It covers cutting-edge topics, including electron transport and magnetism in solids. It is the first book to explain topological insulators and strongly correlated electrons. Explaining solid state physics in a clear and detailed way, it also has over 50 exercises for students to test their knowledge. In addition to the extensive discussion of magnetic impurity problems, bosonization, quantum phase transitions, and disordered systems from the first edition, the new edition includes such topics as topological insulators, high-temperature superconductivity and Mott insulators, renormalization group for Fermi liquids, spontaneous symmetry breaking, zero and finite-temperature Green functions, and the Kubo formalism. Figures from the book and solutions to student exercises are available online at www.cambridge.org/solidstate.