Continuum mechanics for engineers

Author: G. Thomas Mase
Publisher: CRC
ISBN: 9781420085389
Format: PDF, Kindle
Download Now
Now in its third edition, this perennial bestseller provides all the introductory background needed to make effective use of today’s advanced engineering design tools and methods. This new edition adds material relating to emerging engineering areas such as micro-mechanics and biomechanics. It also provides an increased number of worked-out examples and chapter problems. Carefully explaining the needed mathematics as it is required and including numerous illustrations and detailed examples, this book provides practicing professionals with an excellent self-study guide that will update their skills. For instructors wishing to adopt the text to classroom use, a complete solutions manual is provided. ,

A First Course in Continuum Mechanics

Author: Oscar Gonzalez
Publisher: Cambridge University Press
ISBN: 0521886805
Format: PDF, ePub
Download Now
A concise account of classic theories of fluids and solids, for graduate and advanced undergraduate courses in continuum mechanics.

An Introduction to Continuum Mechanics

Author: J. N. Reddy
Publisher: Cambridge University Press
ISBN: 1139466402
Format: PDF, ePub, Mobi
Download Now
This textbook on continuum mechanics reflects the modern view that scientists and engineers should be trained to think and work in multidisciplinary environments. A course on continuum mechanics introduces the basic principles of mechanics and prepares students for advanced courses in traditional and emerging fields such as biomechanics and nanomechanics. This text introduces the main concepts of continuum mechanics simply with rich supporting examples but does not compromise mathematically in providing the invariant form as well as component form of the basic equations and their applications to problems in elasticity, fluid mechanics, and heat transfer. The book is ideal for advanced undergraduate and beginning graduate students. The book features: derivations of the basic equations of mechanics in invariant (vector and tensor) form and specializations of the governing equations to various coordinate systems; numerous illustrative examples; chapter-end summaries; and exercise problems to test and extend the understanding of concepts presented.

Continuum Mechanics

Author: Ellis H. Dill
Publisher: CRC Press
ISBN: 1420009826
Format: PDF, ePub, Docs
Download Now
Most books on continuum mechanics focus on elasticity and fluid mechanics. But whether student or practicing professional, modern engineers need a more thorough treatment to understand the behavior of the complex materials and systems in use today. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity offers a complete tour of the subject that includes not only elasticity and fluid mechanics but also covers plasticity, viscoelasticity, and the continuum model for fatigue and fracture mechanics. In addition to a broader scope, this book also supplies a review of the necessary mathematical tools and results for a self-contained treatment. The author provides finite element formulations of the equations encountered throughout the chapters and uses an approach with just the right amount of mathematical rigor without being too theoretical for practical use. Working systematically from the continuum model for the thermomechanics of materials, coverage moves through linear and nonlinear elasticity using both tensor and matrix notation, plasticity, viscoelasticity, and concludes by introducing the fundamentals of fracture mechanics and fatigue of metals. Requisite mathematical tools appear in the final chapter for easy reference. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity builds a strong understanding of the principles, equations, and finite element formulations needed to solve real engineering problems.

Computational Continuum Mechanics

Author: Ahmed A. Shabana
Publisher: Cambridge University Press
ISBN: 1139505424
Format: PDF
Download Now
This second edition presents the theory of continuum mechanics using computational methods. The text covers a broad range of topics including general problems of large rotation and large deformations and the development and limitations of finite element formulations in solving such problems. Dr Shabana introduces theories on motion kinematics, strain, forces and stresses and goes on to discuss linear and nonlinear constitutive equations, including viscoelastic and plastic constitutive models. General nonlinear continuum mechanics theory is used to develop small and large finite element formulations which correctly describe rigid body motion for use in engineering applications. This second edition features a new chapter that focuses on computational geometry and finite element analysis. This book is ideal for graduate and undergraduate students, professionals and researchers who are interested in continuum mechanics.

Applied Mechanics of Solids

Author: Allan F. Bower
Publisher: CRC Press
ISBN: 9781439802489
Format: PDF
Download Now
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based. Develop Intuitive Ability to Identify and Avoid Physically Meaningless Predictions Applied Mechanics of Solids is a powerful tool for understanding how to take advantage of these revolutionary computer advances in the field of solid mechanics. Beginning with a description of the physical and mathematical laws that govern deformation in solids, the text presents modern constitutive equations, as well as analytical and computational methods of stress analysis and fracture mechanics. It also addresses the nonlinear theory of deformable rods, membranes, plates, and shells, and solutions to important boundary and initial value problems in solid mechanics. The author uses the step-by-step manner of a blackboard lecture to explain problem solving methods, often providing the solution to a problem before its derivation is presented. This format will be useful for practicing engineers and scientists who need a quick review of some aspect of solid mechanics, as well as for instructors and students. Select and Combine Topics Using Self-Contained Modules and Subsections Borrowing from the classical literature on linear elasticity, plasticity, and structural mechanics, this book: Introduces concepts, analytical techniques, and numerical methods used to analyze deformation, stress, and failure in materials or components Discusses the use of finite element software for stress analysis Assesses simple analytical solutions to explain how to set up properly posed boundary and initial-value problems Provides an understanding of algorithms implemented in software code Complemented by the author’s website, which features problem sets and sample code for self study, this book offers a crucial overview of problem solving for solid mechanics. It will help readers make optimal use of commercial finite element programs to achieve the most accurate prediction results possible.

Applied Functional Analysis Third Edition

Author: J. Tinsley Oden
Publisher: CRC Press
ISBN: 1498761151
Format: PDF, ePub
Download Now
Applied Functional Analysis, Third Edition provides a solid mathematical foundation for the subject. It motivates students to study functional analysis by providing many contemporary applications and examples drawn from mechanics and science. This well-received textbook starts with a thorough introduction to modern mathematics before continuing with detailed coverage of linear algebra, Lebesque measure and integration theory, plus topology with metric spaces. The final two chapters provides readers with an in-depth look at the theory of Banach and Hilbert spaces before concluding with a brief introduction to Spectral Theory. The Third Edition is more accessible and promotes interest and motivation among students to prepare them for studying the mathematical aspects of numerical analysis and the mathematical theory of finite elements.

Micromechanical Analysis and Multi Scale Modeling Using the Voronoi Cell Finite Element Method

Author: Somnath Ghosh
Publisher: CRC Press
ISBN: 1420094386
Format: PDF, ePub, Mobi
Download Now
As multi-phase metal/alloy systems and polymer, ceramic, or metal matrix composite materials are increasingly being used in industry, the science and technology for these heterogeneous materials has advanced rapidly. By extending analytical and numerical models, engineers can analyze failure characteristics of the materials before they are integrated into the design process. Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method addresses the key problem of multi-scale failure and deformation of materials that have complex microstructures. The book presents a comprehensive computational mechanics and materials science–based framework for multi-scale analysis. The focus is on micromechanical analysis using the Voronoi cell finite element method (VCFEM) developed by the author and his research group for the efficient and accurate modeling of materials with non-uniform heterogeneous microstructures. While the topics covered in the book encompass the macroscopic scale of structural components and the microscopic scale of constituent heterogeneities like inclusions or voids, the general framework may be extended to other scales as well. The book presents the major components of the multi-scale analysis framework in three parts. Dealing with multi-scale image analysis and characterization, the first part of the book covers 2D and 3D image-based microstructure generation and tessellation into Voronoi cells. The second part develops VCFEM for micromechanical stress and failure analysis, as well as thermal analysis, of extended microstructural regions. It examines a range of problems solved by VCFEM, from heat transfer and stress-strain analysis of elastic, elastic-plastic, and viscoplastic material microstructures to microstructural damage models including interfacial debonding and ductile failure. Establishing the multi-scale framework for heterogeneous materials with and without damage, the third part of the book discusses adaptive concurrent multi-scale analysis incorporating bottom-up and top-down modeling. Including numerical examples and a CD-ROM with VCFEM source codes and input/output files, this book is a valuable reference for researchers, engineers, and professionals involved with predicting the performance and failure of materials in structure-materials interactions.

Advanced Thermodynamics Engineering Second Edition

Author: Kalyan Annamalai
Publisher: CRC Press
ISBN: 1439805725
Format: PDF, ePub, Mobi
Download Now
Advanced Thermodynamics Engineering, Second Edition is designed for readers who need to understand and apply the engineering physics of thermodynamic concepts. It employs a self-teaching format that reinforces presentation of critical concepts, mathematical relationships, and equations with concrete physical examples and explanations of applications—to help readers apply principles to their own real-world problems. Less Mathematical/Theoretical Derivations—More Focus on Practical Application Because both students and professionals must grasp theory almost immediately in this ever-changing electronic era, this book—now completely in decimal outline format—uses a phenomenological approach to problems, making advanced concepts easier to understand. After a decade teaching advanced thermodynamics, the authors infuse their own style and tailor content based on their observations as professional engineers, as well as feedback from their students. Condensing more esoteric material to focus on practical uses for this continuously evolving area of science, this book is filled with revised problems and extensive tables on thermodynamic properties and other useful information. The authors include an abundance of examples, figures, and illustrations to clarify presented ideas, and additional material and software tools are available for download. The result is a powerful, practical instructional tool that gives readers a strong conceptual foundation on which to build a solid, functional understanding of thermodynamics engineering.