Control of Nonlinear Dynamical Systems

Author: Felix L. Chernous'ko
Publisher: Springer Science & Business Media
ISBN: 3540707840
Format: PDF, Kindle
Download Now
This book is devoted to new methods of control for complex dynamical systems and deals with nonlinear control systems having several degrees of freedom, subjected to unknown disturbances, and containing uncertain parameters. Various constraints are imposed on control inputs and state variables or their combinations. The book contains an introduction to the theory of optimal control and the theory of stability of motion, and also a description of some known methods based on these theories. Major attention is given to new methods of control developed by the authors over the last 15 years. Mechanical and electromechanical systems described by nonlinear Lagrange’s equations are considered. General methods are proposed for an effective construction of the required control, often in an explicit form. The book contains various techniques including the decomposition of nonlinear control systems with many degrees of freedom, piecewise linear feedback control based on Lyapunov’s functions, methods which elaborate and extend the approaches of the conventional control theory, optimal control, differential games, and the theory of stability. The distinctive feature of the methods developed in the book is that the c- trols obtained satisfy the imposed constraints and steer the dynamical system to a prescribed terminal state in ?nite time. Explicit upper estimates for the time of the process are given. In all cases, the control algorithms and the estimates obtained are strictly proven.

Nonlinear Dynamical Systems and Control

Author: Wassim M. Haddad
Publisher: Princeton University Press
ISBN: 1400841046
Format: PDF, ePub, Mobi
Download Now
Nonlinear Dynamical Systems and Control presents and develops an extensive treatment of stability analysis and control design of nonlinear dynamical systems, with an emphasis on Lyapunov-based methods. Dynamical system theory lies at the heart of mathematical sciences and engineering. The application of dynamical systems has crossed interdisciplinary boundaries from chemistry to biochemistry to chemical kinetics, from medicine to biology to population genetics, from economics to sociology to psychology, and from physics to mechanics to engineering. The increasingly complex nature of engineering systems requiring feedback control to obtain a desired system behavior also gives rise to dynamical systems. Wassim Haddad and VijaySekhar Chellaboina provide an exhaustive treatment of nonlinear systems theory and control using the highest standards of exposition and rigor. This graduate-level textbook goes well beyond standard treatments by developing Lyapunov stability theory, partial stability, boundedness, input-to-state stability, input-output stability, finite-time stability, semistability, stability of sets and periodic orbits, and stability theorems via vector Lyapunov functions. A complete and thorough treatment of dissipativity theory, absolute stability theory, stability of feedback systems, optimal control, disturbance rejection control, and robust control for nonlinear dynamical systems is also given. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers.

Linear Time varying Approximations to Nonlinear Dynamical Systems

Author: Maria Tomas-Rodriguez
Publisher: Springer Science & Business Media
ISBN: 184996100X
Format: PDF
Download Now
Linear, Time-varying Approximations to Nonlinear Dynamical Systems introduces a new technique for analysing and controlling nonlinear systems. This method is general and requires only very mild conditions on the system nonlinearities, setting it apart from other techniques such as those – well-known – based on differential geometry. The authors cover many aspects of nonlinear systems including stability theory, control design and extensions to distributed parameter systems. Many of the classical and modern control design methods which can be applied to linear, time-varying systems can be extended to nonlinear systems by this technique. The implementation of the control is therefore simple and can be done with well-established classical methods. Many aspects of nonlinear systems, such as spectral theory which is important for the generalisation of frequency domain methods, can be approached by this method.

Reconfigurable Control of Nonlinear Dynamical Systems

Author: Jan H. Richter
Publisher: Springer Science & Business Media
ISBN: 3642176275
Format: PDF, ePub, Mobi
Download Now
This research monograph summarizes solutions to reconfigurable fault-tolerant control problems for nonlinear dynamical systems that are based on the fault-hiding principle. It emphasizes but is not limited to complete actuator and sensor failures. In the first part, the monograph starts with a broad introduction of the control reconfiguration problems and objectives as well as summaries and explanations of solutions for linear dynamical systems. The solution is always a reconfiguration block, which consists of linear virtual actuators in the case of actuator faults and linear virtual sensors in the case of sensor faults. The main advantage of the fault-hiding concept is the reusability of the nominal controller, which remains in the loop as an active system while the virtual actuator and sensor adapt the control input and the measured output to the fault scenario. The second and third parts extend virtual actuators and virtual sensors towards the classes of Hammerstein-Wiener systems and piecewise affine systems. The main analyses concern stability recovery, setpoint tracking recovery, and performance recovery as reconfiguration objectives. The fourth part concludes the monograph with descriptions of practical implementations and case studies. The book is primarily intended for active researchers and practicing engineers in the field of fault-tolerant control. Due to many running examples it is also suitable for interested graduate students.

Optimal Trajectory Tracking of Nonlinear Dynamical Systems

Author: Jakob Lober
Publisher: Springer
ISBN: 3319465740
Format: PDF, ePub, Mobi
Download Now
By establishing an alternative foundation of control theory, this thesis represents a significant advance in the theory of control systems, of interest to a broad range of scientists and engineers. While common control strategies for dynamical systems center on the system state as the object to be controlled, the approach developed here focuses on the state trajectory. The concept of precisely realizable trajectories identifies those trajectories that can be accurately achieved by applying appropriate control signals. The resulting simple expressions for the control signal lend themselves to immediate application in science and technology. The approach permits the generalization of many well-known results from the control theory of linear systems, e.g. the Kalman rank condition to nonlinear systems. The relationship between controllability, optimal control and trajectory tracking are clarified. Furthermore, the existence of linear structures underlying nonlinear optimal control is revealed, enabling the derivation of exact analytical solutions to an entire class of nonlinear optimal trajectory tracking problems. The clear and self-contained presentation focuses on a general and mathematically rigorous analysis of controlled dynamical systems. The concepts developed are visualized with the help of particular dynamical systems motivated by physics and chemistry.

Nonlinear Dynamical Systems

Author: Irwin W. Sandberg
Publisher: John Wiley & Sons
ISBN: 9780471349112
Format: PDF
Download Now
The first truly up-to-date look at the theory and capabilities of nonlinear dynamical systems that take the form of feedforward neural network structures Considered one of the most important types of structures in the study of neural networks and neural-like networks, feedforward networks incorporating dynamical elements have important properties and are of use in many applications. Specializing in experiential knowledge, a neural network stores and expands its knowledge base via strikingly human routes-through a learning process and information storage involving interconnection strengths known as synaptic weights. In Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives, six leading authorities describe recent contributions to the development of an analytical basis for the understanding and use of nonlinear dynamical systems of the feedforward type, especially in the areas of control, signal processing, and time series analysis. Moving from an introductory discussion of the different aspects of feedforward neural networks, the book then addresses: * Classification problems and the related problem of approximating dynamic nonlinear input-output maps * The development of robust controllers and filters * The capability of neural networks to approximate functions and dynamic systems with respect to risk-sensitive error * Segmenting a time series It then sheds light on the application of feedforward neural networks to speech processing, summarizing speech-related techniques, and reviewing feedforward neural networks from the viewpoint of fundamental design issues. An up-to-date and authoritative look at the ever-widening technical boundaries and influence of neural networks in dynamical systems, this volume is an indispensable resource for researchers in neural networks and a reference staple for libraries.

Soft Computing for Control of Non Linear Dynamical Systems

Author: Oscar Castillo
Publisher: Boom Koninklijke Uitgevers
ISBN: 9783790813494
Format: PDF, ePub, Mobi
Download Now
This book presents a unified view of modelling, simulation, and control of non linear dynamical systems using soft computing techniques and fractal theory. Our particular point of view is that modelling, simulation, and control are problems that cannot be considered apart, because they are intrinsically related in real world applications. Control of non-linear dynamical systems cannot be achieved if we don't have the appropriate model for the system. On the other hand, we know that complex non-linear dynamical systems can exhibit a wide range of dynamic behaviors ( ranging from simple periodic orbits to chaotic strange attractors), so the problem of simulation and behavior identification is a very important one. Also, we want to automate each of these tasks because in this way it is more easy to solve a particular problem. A real world problem may require that we use modelling, simulation, and control, to achieve the desired level of performance needed for the particular application.

Modelling Simulation and Control of Non linear Dynamical Systems

Author: Patricia Melin
Publisher: CRC Press
ISBN: 1420024523
Format: PDF
Download Now
These authors use soft computing techniques and fractal theory in this new approach to mathematical modeling, simulation and control of complexion-linear dynamical systems. First, a new fuzzy-fractal approach to automated mathematical modeling of non-linear dynamical systems is presented. It is illustrated with examples on the PROLOG programming language. Second, a new fuzzy-genetic approach to automated simulation of dynamical systems is presented. It is illustrated with examples in the MATLAB programming language. Third, a new method for model-based adaptive control using a neuro-fussy fractal approach is combined with the methods mentioned above. This method is illustrated with MATLAB. Finally, applications of these new methods are presented, in the areas such as biochemical processes, robotic systems, manufacturing, food industry and chemical processes.